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1 Introduction

Lecture 0: Administrative - Monday, January 06

Definition 1.1: Symbolic and Numerical Computation

Considering what
√

2 is, it has two meanings. Symbolically, it is the positive root of x2 − 2, and
numerically, it is

1.414213562 · · ·

In symbolic computation, we care about

1. Correct solution;

2. Efficiency;

while in numerical computation, we care about

1. Correct solution;

2. Efficiency;

3. Stability;

4. Condition.

Definition 1.2: Numerical Computation

In a nutshell, numerical computation is using computer algorithms to (approximately) solve a range of
mathematical problems.

Example 1.1

1. Weather and climate modelling;

2. Financial modelling;

3. Computer graphics and animation;

4. Physics...
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2 Floating Point Number System

Definition 2.1: Real Numbers

• Infinite in extent: There exists x such that |x| is arbitrarily large;

• Infinite in density: Any interval a ≤ x ≤ b contains infinitely many numbers.

Discovery 2.1

We note that computers cannot represent infinite/ arbitrarily large quantities. To resolve this issue,
the standard (partial) solution is to use floating point numbers to approximate the reals.

Definition 2.2: Floating Number System

An approximate representation of real numbers using a finite number of bits.

2.1 Pitfalls in Floating Point Computation

Example 2.1: Numerical Errors

Consider the problem,

12 +
100∑
i=1

0.01

We know that the real solution to this is 13. However, if we can only keep 2 digits of accuracy at a
time, this would result in a value of 12:

((12 + 0.01︸ ︷︷ ︸
12.01≈12

) + 0.01

︸ ︷︷ ︸
12.01≈12

) + · · · ≈ 12

Example 2.2: Numerical Errors: Taylor Series

Recall the Taylor Series, to approximate e−5.5, we may apply the Taylor Series to f(x) = ex around
a = 0 and plug in x = −5.5. Using 5 digit of accuracy, we find

e−5.5 ≈ 0.0026363

after 25 terms of calculation. Moreover, we have another approximation:

e−x = 1
ex

= 1
1 + x + x2

2! + x3

3! + · · ·
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Again using 5 digit of accuracy, we now get e−5.5 ≈ 0.0040865.

The reason why first method fails is that we have subtractions,

which causes cancellation of information.

Lecture 2 - Wednesday, January 08

Discovery 2.2

Floating point numbers often don’t quite behave like true real numbers. This can lead to subtle (yet
huge) errors!

To be useful, our numerical algorithms must work eectively under floating point arithmetic.

2.2 Normalized Form

Definition 2.3: Normalized Form

After expressing the real number in the desired base β, we multiply by a power of β to shift it into a
normalized form:

0.d1d2d3d4 . . .× βp

where:

• di are digits in base β, i.e. 0 ≤ di < β.

• normalized implies we shift to ensure d1 ̸= 0.

• exponent p is an integer.

Comment 2.1

You may see other normalization conventions outside this class, e.g. d1.d2d3d4 . . .× βp

Result 2.1

Density (or precision) is bounded by limiting the number of digits, t.
Extent (or range) is bounded by limiting the range of values for exponent p.

2.2.1 Specific Floating Point System

Theorem 2.1: Specific Floating Point System

The four integer parameters {β, t, L, U} characterize a specific floating point system, F , where β =
base, t = mantissa, and L and U are the lower and upper bounds for the exponent.
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Definition 2.4: Overflow and Underflow

When the exponent is too big (> U)/ or too small (< L), we get overflow/ or underflow.

Example 2.3: Exception Handling

Example Result
Invalid Output 0/0 NaN
Division by 0 1/0 ±∞
Overflow Nmax + 1 ±∞
Underflow Nmin/2 0

Definition 2.5:

The two most common standardized floating point systems are:

• IEEE single precision (32 bits): {β = 2, t = 24, L = −126, U = 127}

• IEEE double precision (64 bits): {β = 2, t = 53, L = −1022, U = 1023}

Theorem 2.2

Sm = 1 bit (signed bit of matissa) mantissa = 23 bit Sp = 1 bit (signed bit of exponent) exponent = 7 bits

Definition 2.6: Fixed Point Numbers

The number of digits after the decimal (or radix) point is fixed.

Discovery 2.3

Unlike fixed point, floating point numbers are not evenly spaced!

Example 2.4

For F = {β = 2, t = 3, L = −1, U = 2} the representable (non-negative) values are spaced like:
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2.3 Rounding vs. Truncation

When converting a real number into a representable FP number, we will only consider:

• Round-to-nearest — rounds to closest available number in F .

– Usually the default.

– Well break ties by simply rounding 1/2 up. (Various other options exist ...)

• Truncation/ ‘‘Chopping’’ — rounds to next number in F towards zero. i.e. simply discard any
digits after the t-th.

Example 2.5

Express 253.9 in a floating point system with base β = 10, t = 6 digits, L = −5, U = 5.

Solution: The answer is 0.253900× 103. ⋆

Example 2.6

Express 8.25 in a floating point system with base β = 2, t = 7 digits, L = −5, U = 5.

Solution: Expressing the number in base 2, we know that

8.25 = 1000.01

Thus we obtain that
8.25 = 0.100001× 24

after shifting to get the leading 0, where the exponent p = 4. The result is hence 0.1000010× 24. ⋆

Example 2.7

Express 1030.9671 in a floating point system with base β = 10, t = 6 digits, L = −5, U = 5.

Solution: After rounding: 0.103097× 104; After truncating: 0.103096× 104. ⋆

2.4 Measuring Error

Definition 2.7: Absolute Error

We define absolute error to be
Eabs = |xexact − xapprox|
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Definition 2.8: Relative Error

We define relative error to be
Erel = |xexact − xapprox|

|xexact|

Comment 2.2

Relative error is more useful because

• is independent of the magnitudes of the numbers involved.

• relates to the number of significant digits in the result.

2.4.1 Correct to roughly s digits

Theorem 2.3

As a rule of thumb, a result is correct to roughly s digits if Erel ≈ 10−s, or

0.5× 10−s ≤ Erel ≤ 5× 10−s

Given that for FP system F , rel. err. between x ∈ R, and its FP approximation, fl(x), has a bound,
E. We deduce

Erel = |x− fl(x)|
|x|

≤ E

⇒ |x− fl(x)| ≤ E|x|

⇒ |x| − |fl(x)| ≤ E|x|

⇒ (1− E)|x| ≤ |fl(x)|

Similarly, one can also show that |fl(x)| ≤ (1 + E)|x|.

Comment 2.3

x

i.e., fl(x) is in a neighborhood of x, somewhere!

(1− E)x (1 + E)x

Definition 2.9: Machine Epsilon

This maximum relative error, E, for a FP system is called machine epsilon or unit round-oerror.
It is defined as the smallest value such that fl(1 + E) > 1 under the given floating point system.
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Example 2.8

Suppose we have F = {β, t, L, U} with chopping. Therefore we have

1 = 0. 10 . . . 0︸ ︷︷ ︸
t

×β1

and
1 + E = 0. 10 . . . 01︸ ︷︷ ︸

t

×β1

Subtracting them we obtain

E = 0. 0 . . . 01︸ ︷︷ ︸
t

×β1 = β−t · β1 = β1−t

Result 2.2

We have the rule fl(x) = x(1 + δ) for some |δ| ≤ E.

Result 2.3

For an FP system (β, t, L, U) with . . .

• rounding to nearest: E = 1/2β1−t (because this is rounded up).

• truncation: E = β1−t.

2.5 Floating Point Error Analysis and Stability

Definition 2.10: Floating Point Addition

IEEE standard requires that for w, z ∈ F ,

w ⊕ z = fl(w + z) = (w + z)(1 + δ)

where ⊕ denotes floating point addition. Again, with |δ| ≤ E.

Theorem 2.4

This rule only applies to individual FP operations! Not sequences of operations. i.e., It is not generally
true that

(a⊕ b)⊕ c = a⊕ (b⊕ c) = fl(a + b + c)

In other words, associativity is broken.

Lecture 3 - Monday, January 13
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2.5.1 Error Bound of (a⊕ b)⊕ c

Recall that by the definition of Erel, we have

Erel = |(a⊕ b)⊕ c− (a + b + c)|
|a + b + c|

= |(a + b)(1 + δ1)⊕ c− (a + b + c)|
|a + b + c|

= |((a + b)(1 + δ1) + c)(1 + δ2)− (a + b + c)|
|a + b + c|

= |(a + b + (a + b)δ1 + c)(1 + δ2)− a− b− c|
|a + b + c|

= |(a + b + (a + b)δ1 + c) + (a + b + (a + b)δ1 + c)δ2 − a− b− c|
|a + b + c|

= |(a + b)δ1 + (a + b + (a + b)δ1 + c)δ2|
|a + b + c|

= |(a + b)δ1 + (a + b)δ1δ2 + (a + b + c)δ2|
|a + b + c|

≤ |(a + b)δ1|+ |(a + b)δ1δ2|+ |(a + b + c)δ2|
|a + b + c|

≤ |(a + b)||δ1|+ |(a + b)||δ1||δ2|+ |
XXXXX(a + b + c)||δ2|

|XXXXX(a + b + c)|

≤ |a + b|E
|a + b + c|

+ |a + b|E2

|a + b + c|
+ E

≤ |a + b|
|a + b + c|

(E + E2) + E

Exercise: Show that
Erel ≤

|a|+ |b|+ |c|
|a + b + c|

(2E + E2)

Comment 2.4

This analysis describes only the worst case error magnification, as a function of the input data. Actual
error could be (much) less.

Discovery 2.4

In the error bound for (a⊕ b)⊕ c as shown above, we have

Erel ≤
|a|+ |b|+ |c|
|a + b + c|

(2E + E2)

Notice that the term |a| + |b| + |c|/|a + b + c| essentially describes how much E could be scaled by to
give the total error, when summing 3 numbers a, b, c.

Worst case magnification when the denominator is small. i.e., when |a + b + c| ≪ |a|+ |b|+ |c|.
This occurs when quantities have diering signs and similar magnitudes, leading to “cancellation”.

12



Example 2.9

Perform (a⊕ b)⊕ c with a = 2000, b = −3.234, c = −2000 for F = {10, 4,−10, 10}, with rounding. We
compute to obtain:

• True result: −3.234

• FP result: (2000⊕−3.234)⊕−2000 = 1997⊕−2000 = −3

Hence the error bound is

Erel ≤
|a|+ |b|+ |c|
|a + b + c|

(2E + E2)

≈ 4003.234
3.234 · 2

(
1
210−3

)
≈ 1.238 (No correct digit)

Note that this is a rather weak bound. The actual relative error: 0.234/3.234 ≈ 0.072 (roughly one
digit correct).

Example 2.10

Perform (a⊕ c)⊕ b with a = 2000, b = −3.234, c = −2000 for F = {10, 4,−10, 10}, with rounding. We
compute to obtain:

• True result: −3.234

• FP result: (2000⊕−2000)⊕−3.234 = 0⊕−3.234 = −3.234

Observation: Re-ordering operations often changes the results.

Example 2.11

Perform (a ⊕ b) ⊕ c with a = −2000, b = −3.234, c = −2000 for F = {10, 4,−10, 10}, with rounding.
We compute to obtain:

• True result: −4003.234

• FP result: (−2000⊕−3.234)⊕−2000 = −2003⊕−2000 = −4003

Hence the error bound:
Erel ≤ (2E + E2) ≈ 2E = 10−3

while the actual relative error is ∼ 5.8 ∗ 10−5.
Observation: Expressions without cancellation often have better (bounds on) error.

2.5.2 Catastrophic Cancellation

13



Theorem 2.5: Catastrophic Cancellation

In general, catastrophic cancellation occurs when subtracting numbers of about the same magnitude,
when the input numbers contain error.

Result 2.4: Sources of errors so far

Adding large and small numbers (very dierent magnitudes).

• Smaller digits get lost or “swamped”!

• Rule of thumb: Prefer to sum numbers of approximately same size and sign.

Subtracting nearby numbers that contain error.

• Loss of accuracy due to catastrophic cancellation.

• Rule of thumb: Try to reformulate computations to avoid cancellation.

2.6 Conditioning of Problems

Definition 2.11: Well-conditioned

For problem P , with input I and output O, if a “small” change to the input, ∆I, gives a “small” change
in the output O, P is well-conditioned. Otherwise, P is ill-conditioned.

2.7 Stability of Algorithms

Definition 2.12: Unstable

If any initial error in the data is magnified by an algorithm, the algorithm is considered numerically
unstable.

Discovery 2.5

Note that

• An algorithm can be unstable even for a well-conditioned problem!

• An ill-conditioned problem limits how well we can expect any algorithm to perform.

2.7.1 Stability Analysis of an Algorithm

Consider the integration problem,

In =
∫ 1

0

xn

x + α
dx

14



for a given n where α is some fixed constant. We state without proof that this is a well-conditioned problem
(which could be solved by algorithms for numerical integration, sometimes called quadrature algorithms)
Easy to observe that we have a recursive algorithm to solve it, for n ≥ 0:

I0 = log 1 + α

α
and In = 1

n
− αIn−1

This is an algorithm, and we would like to perform a stability analysis for the recurrence equation.

Example 2.12

Suppose that the floating point representation of I0 introduces some error ε0. For simplicity, assume
that no other errors are introduced at any stage of the computation after I0 is computed. Let (In)A

be the approximate value of In, i.e., the computed value of In including the effects of ε0. Let (In)E be
the exact value of In. Let

εn = (In)A − (In)E

i.e., the error at step n due to the initial error ε0. The exact In satisfies

(In)E = 1
n
− α(In−1)E

while the approximate In satisfies (In)A = 1
n − α(In−1)A. Subtracting these two equations gives

(In)E − (In)A = α(In−1)A − α(In−1)E

or
εn = (−α)εn−1 = (−α)nε0

If |α| > 1 then any initial error ε0 is magnified by an unbounded amount as n → ∞. On the other
hand, if |α| < 1 then any initial error is “damped out”.

2.8 Exercises for Floating Point Numbers

Exercise 2.1

The numbers in a floating point system are defined by a base β, a mantissa length t, and an exponent
range [L, U ]. A nonzero floating point number x has the form

x = ±.b1b2 . . . bt × βe

Here .b1b2 . . . bt is the mantissa and e is the exponent. The exponent satisfies L ≤ e ≤ U . The bi are
base-β digits and satisfy 0 ≤ bi ≤ β − 1. Nonzero floating point numbers are normalized: b1 ̸= 0. Zero
is represented by both zero mantissa and zero exponent.

(a) What is the largest value of n so that n! can be exactly represented in a floating point system
where (β, t, L, U) = (2, 5,−10, 10). To obtain full marks, you must show your work.

(b) On a base-2 machine, the distance between 7 and the next largest floating point number is 2−12.
What is the distance between 70 and the next largest floating point number?

15



(c) Assume that x and y are normalized positive floating numbers in a base-2 computer with t-bit
mantissa. How small can y − x be if x < 8 ≤ y?

Solution: (a) The largest possible value representable in this floating point number system is

0.11111× 210

which is equivalent to 992 in decimal. Thus the biggest value n can possibly take is 6.

1. I think the answer is 2−8, this is because the mantissa t = 15.
⋆

Exercise 2.2

Consider a fictitious floating number system composed of the following numbers:

S =
{
±b1.b2b3 × 2±y : b2, b3, y = 0 or 1,

and b1 = 1 unless b1 = b2 = b3 = y = 0

}

i.e., Each number is normalized unless it is a zero.

(a) Plot the elements of S on the real axis.

(b) Show how many elements are contained in S. What are the values of OFL, UFL, and the machine
epsilon?

Exercise 2.3

Using the floating-point number format (β, t, U, L) = (2, 20,−200, 200), store the distance between
Earth and Sun (1.5× 108 kilometers) and the distance between Toronto and Waterloo (75 kilometers).
What length does the last bit of the mantissa represent in each case?

16



3 Interpolation

Lecture 4 - Wednesday, January 15

Given a set of data points, points (xi, yi) such that equation yi = p(xi) is satisfied, from an (unknown)
function y = p(x), can we approximate p’s value at other points? E.g.

x

y

0 1 2 3

0

1

2

3

(0,1)

(1,2)

(2,0)

(3,3)

Find a function p(x) that goes exactly through or interpolates all the points.

Comment 3.1

One solution for the above example coule be

y = 4
3x3 − 11

2 x2 + 31
6 x + 1

but this solution is not necissarily unique.

Algorithm 3.1

We’ll begin with methods for interpolating few points (often ≤ 6):

• Polynomial Interpolation

– Vandermonde matrices

– Lagrange form

Then, interpolation strategies for many points.

• Piecewise interpolants:

– Piecewise linear

– Cubic splines

17



3.1 Polynomial Interpolation

3.1.1 Unisolvence Theorem

Theorem 3.1: Unisolvence Theorem

Given n data pairs (xi, yi), i = 1, . . . , n with distinct xi, there is a unique polynomial p(x) of degree
≤ n− 1 that interpolates the data.

Proof. For n points, find all the coefficients ci of the generic polynomial

p(x) = c1 + c2x + c3x2 + c4x3 + · · ·+ cnxn−1

As before, each (xi, yi) point gives one linear equation

yi = c1 + c2xi + c3xi
2 + c4xi

3 + · · ·+ cnxi
n−1

Then solve the n× n linear system.

Example 3.1

Very first example had 4 (xi, yi) pairs: (0, 1), (1, 2), (2, 0), (3, 3). What is the linear system needed to
recover the coefficients of the cubic polynomial?

Solution: We have

c1 = 1
c1 + c2 + c3 + c4 = 2

c1 + c2 · 2 + c3 · 4 + c4 · 8 = 0
c1 + c2 · 3 + c3 · 9 + c4 · 27 = 3

which yields us the solution c1 = 1, c2 = 31/6, c3 = −11/2, and c4 = 4/3. ⋆

3.1.2 Vandermonde Matrices

In general, we get a linear system: 
1 x1 · · · x1

n−1

1 x2 · · · x2
n−1

· · ·
1 xn · · · xn

n−1




c1

c2
...

cn

 =


y1

y2
...

yn


or

V c⃗ = y⃗

Definition 3.1: Vandermonde Matrix

V is called a Vandermonde matrix.

18



Discovery 3.1

The Vandermonde Matrix is invertible if all xi’s are distinct.

3.1.3 Monomial Basis

Definition 3.2: Monimial Form

The familiar form p(x) = c1 + c2x + c3x2 + c4x3 + · · ·+ cnxn−1 is called the monomial form, and can
also be written

p(x) =
n∑

i=1
cix

i−1

Definition 3.3: Monomial Basis

The sequence 1, x, x2, . . . is called the monomial basis.

3.1.4 Lagrange Basis

Definition 3.4: Langrange Basis Polynomial

We will define the Lagrange basis functions, Li(x), to construct a polynomial as

p(x) = y1L1(x) + y2L2(x) + · · ·+ ynLn(x) =
∑

i

yiLi(x)

where yi are the coefficients.

Comment 3.2

They are also our data values, yi = p(xi).

Definition 3.5: Li(x)

Given n data points (xi, yi), we define

Li(x) = (x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn)
(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

Discovery 3.2

We notice that

Li(xj) =

1 i = j

0 i ̸= j

19



Example 3.2

Consider the two points we fit a line to earlier:

(x1, y1) = (1, 2), (x2, y2) = (−1, 4)

What are the corresponding Li functions, and the polynomial p(x) in terms of the Li’s?

Solution: We have
p(x) = y1L1(x) + y2L2(x)

where
L1(x) = x− x2

x1 − x2
, L2(x) = x− x1

x2 − x1

Hence

p(x) = 2 · x− x2

x1 − x2
+ 4 · x− x1

x2 − x1

= −x + 3

as desired. ⋆

Result 3.1

If they are the same polynomial in the end, why might we prefer the Lagrange basis to the monomial
basis?
Answer: We can directly write down the polynomial from the Lagrange basis functions, Li, and the
data points, {(x1, y1), (x2, y2), . . . , (xn, yn)}.
No need to solve a linear system!

Discovery 3.3: Runge’s phenomenon

Runge’s phenomenon suggests that we need to use other methods for high-order polynomials as going
to higher degrees doesn’t necessarily yield a good “quality” fit . . .

3.2 Piecewise Polynomials

Lecture 5 - Monday, January 20

We usually want continuity in our polynomials, so the simplest way is to fit a line in each pair of
adjacent points. However, we want to also avoid the kinks at the data points.

20



“kink”

Figure 1: Example of kinks at data points.

Comment 3.3

We want greater smoothness, because

• For aesthetic purposes;

• For mathematical/numerical applications, we need (approximate) derivative information.

3.3 Hermite Interpolation

Definition 3.6: Hermite Interpolation

Hermite interpolation is the problem of fitting a polynomial given function values and derivatives.

Example 3.3

Given p(0) = 0, p′(0) = 1, p(1) = 3 and p′(1) = 0, determine the coefficients of the cubic polynomial
p(x) = a + bx + cx2 + dx3.

Solution: We know that p(0) = 0, which tells us a = 0, so given that p(1) = 3, we know b + c + d = 3.
Given p′(0) = 1, we have b = 1, and given p′(1) = 0, we have b + 2c + 3d = 0. Hence solving for c and d we
get c = 7 and d = −5. ⋆

3.4 Piecewise Hermite Interpolation

Result 3.2

Notice that now

We can fit many points given values and 1st derivative with piecewise Hermite interpolation.
Use one cubic per pair of (adjacent) points. Sharing the slope/derivative at points ensures
first derivative continuity.

Closed-form Solution: Given points (xi, yi) and (xi+1, yi+1), let si, si+1 to be the slope at the two points
respectively. We define pi(x), the polynomial on the ith interval, by

pi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3
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Hence we have 
1 0 0 0
0 1 0 0
1 ∆xi ∆xi

2 ∆xi
3

0 1 2∆xi 3∆xi
2




ai

bi

ci

di

 =


yi

si

yi+1

si+1


solving for the polynomial coefficients we obtain:

ai = yi

bi = si

ci = 3yi
′ − 2si − si+1

∆xi

di = si+1 + si − 2yi
′

∆xi
2

where ∆xi = xi+1 − xi and yi
′ = (yi+1 − yi)/∆xi.

Definition 3.7: Knots

Knots are points where the interpolant transitions from one polynomial / interval to another.

Definition 3.8: Nodes

Nodes are points where some control points/data is specified.

Discovery 3.4

For Hermite interpolation, knots and nodes are the same.

Question 3.1. For some applications we might still intend to create/control kinks

Solution: We specify different derivatives on either side of a node. ⋆

3.5 Cubic Splines Interpolation

More common problem: no derivative information si is given, only values yi. Can we still fit a piecewise
cubic to the set of points?

Algorithm 3.2

Fit a cubic, Si(x), on each interval, but now require matching first and second derivatives between
intervals.

In particular, we require “interpolating conditions” on each interval [xi, xi+1],

Si(xi) = yi, Si(xi+1) = yi+1

and “derivative conditions” at each interior point xi+1,

Si
′(xi+1) = Si+1

′(xi+1)
Si

′′(xi+1) = Si+1
′′(xi+1)
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3.5.1 Counting Unknowns

Assuming we have n data points. A cubic polynomial has 4 unknowns, and since we have n − 1 intervals,
there are in total 4n− 4 unknowns.

3.5.2 Counting Equations

Assuming we have n data points. For each interval we have two endpoints, which gives us in total 2(n− 1)
equations. We also get 2 derivative conditions per interior point, which yields us 2(n−2) = 2n−4 equations.

Discovery 3.5

Notice that we do not have enough information for a unique solution. We need 2 more equations.

Theorem 3.2

The two more equations we needed are usually at domain endpoints, called boundary conditions or end
conditions.

3.5.3 Boundary Conditions
Clamped/complete:

Definition 3.9: Clamped boundary conditions

Slope set to specific value.

S′(x1) = specified, S′(xn) = specified

If both boundaries clamped, it is a complete or clamped spline.

Free/natural/variational

Definition 3.10: Free boundary condition

Free boundary condition: Second derivatives set to zero.

S′′(x1) = 0, S′′(xn) = 0

If both boundaries are free, called a natural cubic spline.

Periodic

Definition 3.11: Periodic boundary conditions

Periodic Boundary Condition:

S′(x1) = S′(xn), S′′(x1) = S′′(xn)

Start and end derivatives match each other
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Result 3.3

Hermite interpolation — each interval can be found independently.

• Solve n− 1 separate systems of 4 equations.

Cubic spline — must solve for all polynomials together at once!

• Solve one system of with 4(n− 1) equations.

3.6 Cubic splines via Hermite interpolation

Algorithm 3.3

1. Express unknown polys with closed form Hermite equations.

2. Treat the si (slopes at nodes) as unknowns.

3. Solve for si that give continuous 2nd derivatives — i.e., force it to satisfy cubic spline definition.

4. Given si, plug into closed form Hermite equations to recover poly coefficients: ai, bi, ci, di.

For cubic splines, we had three types of conditions (ignoring ends).

1. Values match at all interval endpoints.

2. First derivatives match at interior points.

3. Second derivatives match at interior points.

Comment 3.4

Notice that (1) and (2) are satisfied aleady by Hermite, to achieve item (3) we need to find si satisfying
Si

′′(x) = Si+1
′′(x).

3.6.1 Derivation of Cubic Splines Equations

We start with Hermite formulas:

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

The second derivative is

Si
′′(x) = 2ci + 6di(x− xi) = 2(3yi

′ − 2si − si+1)
∆xi

+ 6(si+1 + si − 2yi
′)

∆xi
2 (x− xi)

To force matching second derivative,

Si
′′(xi+1) = Si+1

′′(xi+1) for i = 1, . . . , n− 2
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Comment 3.5

Recall

Si
′′(xi+1) = 2(3yi

′ − 2si − si+1)
∆xi

+ 6(si+1 + si − 2yi
′)

∆xi
2 (xi+1 − xi)

= 2(3yi
′ − 2si − si+1)

∆xi
+ 6(si+1 + si − 2yi

′)
∆xi

Si+1
′′(xi+1) = 2(3yi+1

′ − 2si+1 − si+2)
∆xi+1

+ 6(si+2 + si+1 − 2yi+1
′)

∆xi+1
2 (xi+1 − xi+1)

= 2(3yi+1
′ − 2si+1 − si+2)

∆xi+1

Hence we have
2(3yi

′ − 2si − si+1)
∆xi

+ 6(si+1 + si − 2yi
′)

∆xi
= 2(3yi+1

′ − 2si+1 − si+2)
∆xi+1

∆xi(3yi+1
′ − 2si+1 − si+2) = ∆xi+1(3yi

′ − 2si − si+1 + 3(si+1 + si − 2yi
′))

= ∆xi+1(2si+1 + si − 3yi
′)

3∆xiyi+1
′ + 3∆xi+1yi

′ = ∆xi+1(2si+1 + si) + ∆xi(2si+1 + si+1)
= ∆xi+1si + ∆xisi+2 + 2si+1(∆xi + ∆xi+1)

or, setting i→ i− 1 yields us,

3∆xi−1yi
′ + 3∆xiyi−1

′ =∆xisi−1 + ∆xi−1si+1 + 2si(∆xi−1 + ∆xi)
for i = 2, . . . , n− 1

which gives us n− 2 equations for n unknowns as anticipated. Two extra equations are determined
from the boundary equations:

Result 3.4

1. Clamped BC:
s1 = s1

∗, sn = sn
∗

2. Free BC:
s1 + s2

2 = 3
2y′

1,
sn−1

2 + sn = 3
2y′

n−1

Lecture 6 - Wednesday, January 22

3.6.2 Efficient Cubic Splines — Matrix Form

Theorem 3.3

We can write this linear system for the slopes in matrix/vector form, T · s⃗ = r⃗. Having solved for s,
we can recover the a, b, c, d coefficients.
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Example 3.4

What is the linear system for si to fit a spline to the 4 points (0, 1), (2, 1), (3, 3), (4,−1) with clamped
BC of s1 = 1 and s4 = −1?

Solution: Let’s first compute all ∆xi’s and all the y′
i’s:

∆x1 = 2− 0 = 2 y′
1 = 1−1

2 = 0
∆x2 = 3− 2 = 1 y′

2 = 3−1
1 = 2

∆x3 = 4− 3 = 1 y′
2 = −1−3

1 = −4

Now we find the rows for i = 1. We know that i = 1 is a boundary, namely s1 = 1, so

T1 =
[
1 0 0 0

]
, r1 = 1

i = 2 is an interior, so we have

∆x2s1 + 2(∆x2 + ∆x1)s2 + ∆x1s3 = 3(∆x2y′
1 + ∆x1y′

2)

which yields us s1 + 6x2 + 2s3 = 12, sop

T2 =
[
1 6 2 0

]
, r2 = 12

Likewise, we could obtain the system T · s⃗ = r⃗ as following:
1 0 0 0
1 6 2 0
0 1 4 1
0 0 0 1




s1

s2

s3

s4

 =


1
12
−6
−1


Solving for si’s and plug into the Hermite closed form, we get coefficients ai, bi, ci and di for each cubic
polynomial Si(x). ⋆

Matrix Size: New system (for si): one equation per node, so matrix size is n × n. Old system (for ai,
bi, ci, di): 4 coefficients each for n− 1 intervals, so the matrix size is (4n− 4)× (4n− 4).

Matrix Structure: The matrix is tridiagonal. Only the entries on the diagonal and its two neighbours
are ever non-zero!

Example 3.5

Give the conditions that should be satisfied for the piecewise function S(x) to be a valid cubic spline,
assuming we already know:

S(x) =

 5
3 + 16

3 x + ax2 + x3 on [−1, 1]
− 7

3 + bx + 22
3 x2 + 2

3 x2 on [1, 2]

Is there a choice of a and b to make S(x) a valid cubic spline?

26



Solution: In this case, we only need to check the interpolating and derivative conditions hold at x1, since
no boundary conditions are stated. Interpolating:

S1(1) = S2(1) =⇒ 5
3 + 16

3 + a + 1 = −7
3 + b + 22

3 + 2
3

First derivative:

S′
1(1) = S′

2(1) =⇒ 16
3 + 2a + 3 = b + 44

3 + 2

Second derivative:

S′′
1 (1) = S′′

2 (1) =⇒ 2a + 6 = 44
3 + 4

Now what’s left to do is to check whether there exists values of a and b satisfying all three equations. ⋆

3.7 Exercises for Interpolation

Exercise 3.1

(a) Show that there is a unique cubic polynomial p3(x) for which

p3(x0) = f(x0), p3(x2) = f(x2), p′
3(x1) = f ′(x1), p′′

3(x1) = f ′′(x1)

where f(x) is a given function and x0 ̸= x2.

(b) Derive base functions analogous to the Lagrange basis for p3(x).

Exercise 3.2

For Lagrange polynomial interpolation, n data points (xi, yi), i = 1, 2, . . . , n are given.

(a) What is the degree of each polynomial function Lj(x) in the Lagrange basis?

(b) What function results if we sum the n functions in the global Lagrange basis, that is, what is

g(x) =
n∑

j=1
Lj(x)

Explain.

Solution: For part (a), it should be n− 1/ For part (b), the interpolating polynomial of f on the distinct
points x0, . . . , xn is given by

g(n) =
∑

j

f(xj)Lj(x)

Therefore, if f(x) = 1, then we have
1 =

∑
j

Lj(x)

as desired. ⋆
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Exercise 3.3

Let S(x) be the natural spline interpolant of x3 at x = −3, x = −1, x = 1 and x = 3. What is S(0)?
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4 Parametric Curve

So far we’ve only handled functions y = p(x), i.e. one input corresponds to one output. However,
there are cases where the graph looks something like the following

In this case, it is impossible to find a function. Therefore we need to introduce “Parametric
curves”, which will let us handle more general curves.

Question 4.1. General Problem

For a polynomial function y = p(x), x uniquely dictates y So two distinct points cannot have the
same x coordinate!

Solution:

Let x and y each be separate functions of a new parameter, t. Then a point’s position is given by the
vector P⃗ (t) = (x(t), y(t)).

⋆

4.1 Examples

4.1.1 Line Example

Discovery 4.1

The simple line y = 3x + 2 can equivalently be described by the two coordinate functions:

x(t) = t,

y(t) = 3t + 2

4.1.2 Semi-circle Example Version — 1

Consider a curve along a semi-circle with radius of 1 in the upper half plane, oriented from (1, 0) to (−1, 0).
The usual implicit equation for a unit circle is x2 + y2 = 1.

Discovery 4.2

One parametric form is:

x(t) = cos(πt), y(t) = sin(πt) for 0 ≤ t ≤ 1.

29



Comment 4.1

A given curve can be “parameterized” in different ways, while yielding the exact same shape.

4.1.3 Semi-circle Example Version — 2

Consider a curve along a semi-circle with radius of 1 in the upper half plane, oriented from (−1, 0) to (1, 0).

Discovery 4.3

One parametric form is:

x(t) = cos(π(1− t)), y(t) = sin(πt) for 0 ≤ t ≤ 1.

Lecture 7 - Monday, January 27

4.1.4 Semi-circle Example Version — 3

Consider a curve along a semi-circle with radius of 1 in the upper half plane, oriented from (1, 0) to (−1, 0).

Discovery 4.4

An alternative parametric form is:

x(t) = cos(πt2), y(t) = sin(πt2) for 0 ≤ t ≤ 1.

The 2 parameterizations traverse the curve in the same direction, but at different speeds/ rates.

4.1.5 Square Example

A square can also be described as a parametric curve, using a piecewise definition.

(1) x(t) = t, y(t) = 0 for 0 ≤ t ≤ 1
(2) x(t) = 1, y(t) = t− 1 for 1 ≤ t ≤ 2
(3) x(t) = 1− (t− 2), y(t) = 1 for 2 ≤ t ≤ 3
(4) x(t) = 0, y(t) = 1− (t− 3) for 3 ≤ t ≤ 4

x

y

Comment 4.2

Visually, this curve is not smooth. Mathematically, this is reflected in the fact that x(t) and y(t) do
not have derivatives at t = 1, 2, 3.
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4.2 Interpolating Curve Data by a Parametric Curve

Code 4.1: Arc-Length Parameterization

A common parameterization is to choose t as the distance along the curve.

Definition 4.1: Parametric Curve

Parametric curves are just the general concept of using a parameter to control multiple curves coordi-
nates separately. Not a specific curve type!

We can combine all our existing interpolant types with parametric curves, by considering x(t) and
y(t), separately.

• Use two Lagrange polynomials, x(t), y(t), to fit a small set of (ti, xi, yi) point data.

• Use Hermite interpolation for x(t), y(t) given (ti, xi, yi, sxi, syi) point/derivative data for many points.

• Fit separate cubic splines to x(t), y(t), given many points.

Discovery 4.5

Given ordered (xi, yi) point data, we don’t yet have a parameterization. We need data for t, to form
(ti, xi) and (ti, yi) pairs to fit curves to.

Algorithm 4.1

• Option 1: Use the node index as the parameterization, i.e. ti = i at each node.

• Option 2: (approximate arc-length parameterization): Set t1 = 0 at first node. Recursively
compute ti+1 = ti +

√
(xi+1 − xi)2 + (yi+1 − yi)2.

Result 4.1

Expressing curves in a parametric form enables more general curves:

• No restriction on x or y values, provided t parameter is monotonic.

• Curves can have different parameterizations, which vary in their speed and direction.

• We can use them with any of our polynomial curve fitting methods.
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5 Ordinary Differential Equations

Applied mathematicians or other scientists often need to construct or define a mathematical model of a
problem. n many cases, these can take the form of an ODE.

“All models are wrong, but some are useful.”

Definition 5.1: ODE

ODE (ordinary differential equations) are in the form of

F (x, y(x), y′(x), . . . , y(n)(x)) = 0

where y(i)(x) is the ith derivative of y(x).

Definition 5.2: Order

The highest power in terms of the derivative in an ode is called the order of the ODE.

Example 5.1

For eaxmple, first order differential equations are in the form of

F (x, y(x), y′(x)) = 0

5.1 Example: A Simple Population Model

Question 5.1.

Consider a mouse population, y(t), over time. With enough food, we’ll say the population changes
as

y′(t) = a · y(t)

where a is some constant (reproduction rate).

Comment 5.1

y(t) is not given explicitly (in closed form)!

Solution: For this simple ODE with initial pop., y0 = y(t0), there is a closed-form solution:

y(t) = y0 · exp(a · (t− t0))

Aside: How can we verify it? To verify, we compute y′(t) by differentiating the closed form y(t) and compare:

y′(t) = d

dx
[y0 · exp(a · (t− t0))] = y0 · exp(a · (t− t0)) · a = a · y(t)

which aligns with that of the ODE. ⋆
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Question 5.2.

In reality, food supplies (and space and partners and ...) are limited. Consider a new model,

y′(t) = y(t) · (a− b · y(t))

where the b term expresses the effect of resource limits.

Discovery 5.1

• For small y(t), we again have y′(t) ≈ a · y(t). (Exponential growth.)

• For y(t) ≈ a/b, we have y′(t) ≈ 0. Population growth levels off!

Solution: This new population growth model also has a closed-form

y(t) = ay0 exp(a · (t− t0))
by0 exp(a · (t− t0)) + (a− y0b)

This is logistic growth. ⋆

A very slightly more complex model is:

y′(t) = y(t) · (a(t)− b(t) · y(t)α)

This already has no general closed form solution. Even (fairly) simple mathematical models often lack closed
form solutions, except in special cases.

Theorem 5.1: (Partial) Solution

We will develop “numerical methods” to instead find approximate solutions.

5.2 Approximating Methods

Definition 5.3: IVP

Initial Value Problem (IVP) is a differential equation

y′(t) = f(t, y(t))

where f is specified, and the initial values are

y(t0) = y0

5.2.1 System of Differential Equations

Consider a model with multiple variables that interact. E.g. x and y coordinates of a moving object. This
gives a system of differential equations, such as

x′(t) = fx(t, x(t), y(t)), with x(t0) = x0

y′(t) = fy(t, x(t), y(t)), with y(t0) = y0

33



which can be written in the vector form[
x′(t)
y′(t)

]
=
[

fx(t, x(t), y(t))
fy(t, x(t), y(t))

]
with

[
x(t0)
y(t0)

]
=
[

x0

y0

]
or in vector notation

(x, y)′ = f⃗(t, (x, y)(t)), with(x, y)(t0) = (x0, y0)

Comment 5.2

The matrix notation is specially helpful when fx and fy are linear. If that is the case, then the f⃗ can
be decomposed as a constant matrix and a vector containing the functions.

Example 5.2: Predator-Prey Systems

We have

R′(t) = k ·R(t)− a ·R(t) ·W (t)
W ′(t) = −r ·W (t) + b ·R(t) ·W (t)

where

• R(t): # of rabbits at time t

• W (t): # of wolves at time t

• a, b, k and r are positive constants

5.2.2 Higher Order Differential Equations

Higher derivatives occur often in real problems. The order is the highest derivative in the equation:

y(n)(t) = f(t, y(t), y′(t), y′′(t), . . . , y(n−1)(t))

5.3 Approximating Methods

Definition 5.4: Time Stepping Method

The most common class of methods for determining a numerical solution for a first order initial value
problem are called time stepping methods.

A time step is the interval hn = tn+1 − tn, which is determined by the method. Time stepping
methods carry a candidate size hcand for the next time step which may be revised during each time step.
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They have the following general form:
Algorithm 1: Example of a numerical integration algorithm

Data: Initialize y0, t0, hcand, n = 0
1 repeat
2 Compute yn+1 and hn using data tn, yn, hcand and f(t, z)
3 tn+1 ← tn + hn

4 Recompute hcand

5 n← n + 1
6 until done

Line 2 combines both advancing the solution (computing y(n+1)) and time step size selection (com-
puting hn), although line 4 is also part of time step size selection.

5.4 The Forward Euler Method

Definition 5.5: Forward Euler Method

Forward Euler is an explicit, single-step scheme.

Algorithm 5.1

Compute the current slope:
y′

n = f(tn, yn)

Step in a straight line with that slope:

yn+1 = yn + h · y′
n

Repeat.

Discovery 5.2

Time-stepping applies a recurrence relation to approximate the function values at later and later times

Comment 5.3

Later we’ll analyze the stability of time-stepping methods.

Forward Euler — Summary

Theorem 5.2: Forward Euler Scheme

The Forward Euler Scheme is
yn+1 = yn + h · f(tn, yn)

Lecture 8 - Thursday, January 30
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5.4.1 Example

Question 5.3.

Consider the simple IVP y′(t) = 2y(t), with initial conditions at t0 = 1 we have y(t0) = 3.

Solution: We will do the following:

Algorithm 5.2

1. Write down the recurrence for Forward Euler, with step size h = 1.

2. Use forward Euler to approximate y at time t = 5.

3. Compare against the true solution, y(t) = 3 exp[2(t− t0)].

4. Repeat for h = 1/2.

The forward Euler formula is given by

yn+1 = yn + 1 · 2yn = 3yn

Therefore, given the initial condition, we have the following table of values for h = 1:

n tn yn y(tn)
0 1 3 3
1 2 9 22.2
2 3 27 163.8
3 4 81 1210
4 5 243 8943

where the rightmost column contains exact solutions. Repeat for h = 1/2, we obtain

n tn yn y(tn)
0 1 3 3
1 1.5 6 8.15
2 2 12 22.2
3 2.5 24 60.3
4 3 48 163.8
5 3.5 96 445
6 4 192 1210

⋆

Comment 5.4

y(tn) is the exact value of the true function y at time tn. yn is the approximate/discrete data at step
n, i.e. at time tn, yn ≈ y(tn).
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5.4.2 Systems of Equations

Example 5.3

For systems of 1st order ODEs, we apply Forward Euler to each row in exactly the same way. For
example, given the system of differential equations:[

y′(t)
z′(t)

]
=
[

z(t)
tz(t)− ay(t) + sin(t)

]

with initial conditions: [
y(0)
z(0)

]
=
[

1
3

]
Applying Forward Euler gives a (vector) recurrence, we get:[

yn+1

zn+1

]
=
[

yn

zn

]
+ h

[
zn

tnzn − ayn + sin(tn)

]

with the same initial conditions.

Question 5.4.

Consider a particle with coordinates (x(t), y(t)) satisfying the ODE system:x′(t) = −y(t)
y′(t) = x(t)

with initial conditions:
x(t0) = 2, y(t0) = 0, and t0 = 2

Solution: We wish to solve three steps with h = 2: In vector form, we have[
x′(t)
y′(t)

]
=
[
−y(t)
x(t)

]
Apply forward Euler to this problem, we have[

xn+1

yn+1

]
=
[

xn

yn

]
+ 2

[
−yn

xn

]
=
[

xn − 2yn

yn + 2xn

]
Hence we have

Step 1:
[

x1

y1

]
=
[

2− 2(0)
0 + 2(2)

]
=
[

2
4

]

Step 2:
[

x2

y2

]
=
[

2− 2(4)
4 + 2(2)

]
=
[
−6
8

]

Step 3:
[

x2

y2

]
=
[
−22
−4

]
⋆
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5.4.3 Deriving Forward Euler

Theorem 5.3

Forward Euler Method works.

Proof. There are two ways to arrive at Forward Euler:

• ‘‘Finite difference’’ view. We approximate the derivative y′ with a finite difference.
Recall the ODE form:

y′(t) = f(t, yn)

where the fintie difference approximation of y′ gives

y′(tn) ≈ yn+1 − yn

tn+1 − tn
= yn+1 − yn

h
= f(tn, yn)

Rearranging yields
yn+1 = yn + h · f(tn, yn)

• Taylor series view. A Taylor series approximates a function in some neighbourhood using an
infinite weighted sum of its derivatives. Including more terms in the series gives better estimates of the
function value.

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + f ′′′(a)

3! (x− a)3 + · · ·

We wish to approximate y(tn+1) from tn data. Hence

f 7→ y, a 7→ tn, x 7→ tn+1

In other words, we have

y(tn+1) = y(tn) + y′(tn)(tn+1 − tn) + y′′(tn)
2! (tn+1 − tn)2 + y′′′(tn)

3! (tn+1 − tn)3 + · · ·

= y(tn) + hy′(tn) + h2

2! y′′(tn) + h3

3! y′′′(tn) + · · ·

since (tn+1 − tn) =: h. Assume that terms of order two or higher will be small as h→ 0, we can drop
them and replace y′ with an evaluation of the dynamics function f :

y(tn+1) = yn+1 + hf(tn, yn)

thus we have completed our proof.

5.4.4 Error of Forward Euler Method

Forward Euler makes a linear approximation at each step, incurring a “local” error.

Discovery 5.3

Notice that
Smaller step size h → more frequent slope estimates → less error

38



Recall the Taylor series,

y(tn+1) = y(tn) + hy′(tn) + h2

2! y′′(tn) + h3

3! y′′′(tn) + · · ·

We notice that the difference between it and forward Euler is

yn+1 − y(tn+1) = −h2

2! y′′(tn) + O(h3)

Definition 5.6: LTE

The above error is known as local truncation error.

Comment 5.5

Notice that as h decreases, the error decreases quodratically.

5.5 Trapezoidal Rule (“Crank-Nicolson”) and Modified Euler Methods

To approximate more accuretely, we could keep more terms in the taylor series.

Question 5.5. H

owever, notice that we do not know y′′.

Solution: Use a finite difference to approximate y′′:

y′′ ≈ y′(tn+1)− y′(tn)
h

+ O(h)

⋆

Result 5.1

Now we have

y(tn+1) = y(tn) + hy′(tn) + h2

2! y′′(tn) + O(h3)

= y(tn) + hy′(tn) + h2

2!

[
y′(tn+1)− y′(tn)

h
+ O(h)

]
+ O(h3)

= y(tn) + hy′(tn) + h

2! [y′(tn+1)− y′(tn)] + O(h3)

= y(tn) + h

2! [y′(tn+1) + y′(tn)] + O(h3)

Since y′(t) = f(t, y(t)), we have

y(tn+1) = y(tn) + h

2 (f(tn, y(tn)) + f(tn+1, y(tn+1))) + O(h3)
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Comment 5.6

Therefore the local truncation error for trapezoidal rule is O(h3). Reducing step size h now reduces
per-step error cubically in h!

Discovery 5.4

Observe that trapezoidal yields us an implicit formula, which is hard to solve. Hence we have the
following challenge:

Question 5.6.

How can we make trapezoidal explicit?

5.5.1 Improved Forward Euler

Algorithm 5.3: Improved Forward Euler

• Take forward Euler step to estimate the end point.

• Evaluate slope there.

• Use this approximate end-of-step slope in the trapezoidal formula.

Lecture 9 - Monday, February 03

In particular, we have
y∗

n+1 = yn + h · f(tn, yn)

and hence the improved Euler is

yn+1 = yn + h

2
[
f(tn, yn) + f(tn+1, y∗

n+1)
]

Discovery 5.5

Like trapezoidal, improved Euler has local truncation error (LTE) O(h3).

Theorem 5.4

Improved Euler works. The proof below is the derivation.

Proof. If we have a function of multiple variables, we can Taylor expand in one variable ...

f(x, y + hy) = f(x, y) + hy ·
∂f

∂y
+ O(h2

y)

or multiple variables,

f(x + hx, y + hy) = f(x, y) + hx
∂f

∂x
+ hy

∂f

∂y
+ O(h2

x) + O(h2
y)
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Trapezoidal gives
y(tn+1) = y(tn) + h

2 [f(t,yn) + f(tn+1), yn+1] + O(h3)

and Forward Euler gives
y(tn+1) = y(tn) + h · f(tn, y(tn)) + O(h2)

Now, let
y∗

n+1 := y(tn) + h · f(tn, y(tn)) + O(h2)

Then the error is
y(tn+1)− y∗

n+1 = O(h2)

We know that
f(x, y + hy) = f(x, y) + hy ·

∂f

∂y
+ O(h2

y)

Taylor expanding f at y∗
n+1 gives us that

f(tn+1, y(tn+1)) = f(tn+1, y∗
n+1) + ∂f

∂y
(tn+1, y∗

n+1) · (y(tn+1)− y∗
n+1)︸ ︷︷ ︸

O(h2)

+ O((y(tn+1)− y∗
n+1)2)︸ ︷︷ ︸

O(h4)

Therefore,
f(tn+1, y(tn+1)) = f(tn+1, y∗

n+1) + O(h2)

Use this approximate end-of-step slope in the Trapezoidal expression gives,

y(tn+1) = y(tn) + h

2
[
f(tn, y(tn)) + f(tn+1, y∗

n+1)
]

+ O(h3)

Improved Euler has local truncation error (LTE) of O(h3), like the trapezoidal method (but with different
error coefficients).

5.5.2 Improved Euler / Trapezoidal Example

Example 5.4: Improved Euler / Trapezoidal Example

We previously applied Forward Euler (F.E.) to the ODE system:

x′(t) = −y(t)
y′(t) = x(t)

with initial conditions x(t0) = 2, y(t0) = 0, t0 = 0. We wish to apply improved Euler with time step
size h = 2 to find x, y at t = 4.

Solution: In this problem, we have from Forward Euler:[
x∗

n+1
y∗

n+1

]
=
[

xn

y + n

]
+ 2

[
−yn

xn

]
and from Trapezoidal, we have [

x∗
n+1

y∗
n+1

]
=
[

xn

yn

]
+ 2

2

[
−yn − y∗

n+1
xn + x∗

n+1

]
Apply to our IVP, we have
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Forward Euler Improved Euler

Step 1:
[

x1

y1

]
=
[

2− 2(0)
0 + 2(2)

]
=
[

2
4

] [
x1

y1

]
=
[
−2
4

]

Step 2:
[

x2

y2

]
=
[

2− 2(4)
4 + 2(2)

]
=
[
−6
8

] [
x2

y2

]
=
[
−4
−8

]
⋆

5.6 Global vs Local Error

Definition 5.7: Local (Truncation) Error

For a few methods, we saw order of the error for a single step – this is the local (truncation) error.

Definition 5.8: Global Error

The Global error is the total error accumulated at the final time, tfinal.

Discovery 5.6

For a constant step h, computing from t0 to end time tfinal,

#steps = tfinal − t0

h
= O(h−1)

Then, for a given method we have (roughly):

Global Error ≤ (Local Error) ·O(h−1)

i.e., one degree lower.

5.6.1 Single-Step vs. Multistep schemes

Definition 5.9: Single-Step

The single-step methods we’ve discussed use info from the current time tn (and forward) to solve for
yn+1.

Definition 5.10: Multistep

Multi-step methods also use information from earlier timesteps, that is, tn−1, tn−2, etc.

5.7 ODEs More Schemes

5.7.1 Backwards (Implicit) Euler method
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Algorithm 5.4

Backwards Euler uses the slope from only the end of the step:

yn+1 = yn + h · f(tn+1, yn+1)

Its local truncation error is O(h2), like forward Euler.

5.7.2 Explicit “Runge Kutta” schemes

Recall improved Euler:

1. “FE-Step”:
y∗

n+1 = yn + hf(tn, yn)

2. “Trapezoidal-Step”:
yn+1 = yn + h

2
[
f(tn, yn) + f(tn+1, y∗

n+1)
]

Algorithm 5.5

It can also be written as:

k1 = hf(tn, yn)
k2 = hf(tn + h, yn + k1)

yn+1 = yn + k1

2 + k2

2

Definition 5.11: Runge Kutta methods

A family of explicit schemes, often written this way, are called Runge Kutta methods.

Result 5.2

Similar schemes exist for higher orders, O(hα) for α = 3, 4, 5, 6, . . .. “Classical” Runge-Kutta, or
“RK4”, with LTE of O(h5):

k1 = hf(tn, yn),

k2 = hf

(
tn + h

2 , yn + k1

2

)
,

k3 = hf

(
tn + h

2 , yn + k2

2

)
,

k4 = hf(tn + h, yn + k3),

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4).
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5.7.3 Implicit multistep schemes: BDF methods

Definition 5.12: BDF

BDF stands for Backwards Differentiation Formulas.

Comment 5.7

BDF1, BDF2, BDF3, etc. – number indicates order of global error.

Example 5.5: BDF1

“BDF1” is backward Euler, so it’s just a single-step scheme.

Example 5.6: BDF2

BDF2 uses current and previous step data:

yn+1 = 4
3yn −

1
3yn−1 + 2

3hf(tn+1, yn+1)

BDF2 has local truncation error O(h3), and is a multi-step scheme.
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5.7.4 Derive BDF

Theorem 5.5

Deriving BDF1 methods via Interpolation.

Proof. idea of the proof:

1. Fit an interpolant p(t) with Lagrange polynomials to the unknown point, (tn+1, yn+1), and one or more
earlier points.

2. Determine its derivative, p′(t), by differentiating.

3. Require end-of-step slope to match: p′(tn+1) = f(tn+1, yn+1) (i.e., dynamics function slope matches
polynomial’s derivative there.) Rearranging for unknown yn+1 gives a BDF scheme.

Now we may start the derivation. Fit a Langrange polynomial p(t) to (tn, yn) and (tn+1, yn+1):

p(t) = yn

(
t− tn+1

tn − tn+1

)
+ yn+1

(
t− tn

tn+1 − tn

)
= yn

−h
(t− tn+1) + yn+1

h
(t− tn)

Taking derivative with respect to t we get

p′(t) = yn+1 − yn

h
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which gives the slope of the line. We require it to match the end point’s slope, which is given by

f(tn+1, yn+1)

Hence

p′(t) = yn+1 − yn

h
= f(tn+1, yn+1)

=⇒ yn+1 = yn + h · f(tn+1, yn+1)

which is the Backwards (implicit) Euler’s method, a.k.a. BDF1.

Question 5.7. Exercise: Derive BDF2 via Interpolation

Now, fit Lagrange polynomial to 3 timesteps of data: tn−1, tn, tn+1.

p(t) = yn+1
(t− tn)(t− tn−1)

(tn+1 − tn)(tn+1 − tn−1) + yn
(t− tn+1)(t− tn−1)

(tn − tn+1)(tn − tn−1) + yn−1
(t− tn+1)(t− tn)

(tn−1 − tn+1)(tn−1 − tn)

Determine p′(t). Require p′(tn+1) = f(tn+1, yn+1), like for BDF1. Work through the details to get
the BDF2 recurrence.

yn+1 = 4
3yn −

1
3yn−1 + 2

3hf(tn+1, yn+1)

5.7.5 Explicit multistep schemes: Adams-Bashforth

Example 5.7

We have 2nd order Adams-Bashforth:

yn+1 = yn + 3
2hf(tn, yn)− 1

2hf(tn−1, yn−1)

Discovery 5.7

LTE is O(h3).

5.7.6 Summary

Name Single/Multi-Step Explicit/Implicit Global Truncation Error
Forward Euler Single Explicit O(h)
Improved Euler and Midpoint Single Explicit O(h2)
(2nd order Runge Kutta schemes)
4th Order Runge Kutta Single Explicit O(h4)
Trapezoidal Single Implicit O(h2)
Backwards/Implicit Euler (BDF1) Single Implicit O(h)
BDF2 Multi Implicit O(h2)
2-step Adams-Bashforth Multi Explicit O(h2)
3rd order Adams-Moulton Multi Implicit O(h3)
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5.8 High Order ODEs — Convert higher order into first order system

Definition 5.13:

The general form for such a higher ODE looks like:

y(n)(t) = f(t, y(t), y′(t), y′′(t), y′′′(t), . . . , y(n−1)(t))

i.e., all derivatives may be inter-related.

Comment 5.8

Fortunately, we can convert them to systems of first order ODE’s. Then we can use all the time-stepping
schemes we’ve seen.

Algorithm 5.6

For each variable y with more than a first derivative, introduce new variables

yi = y(i−1)

for i = 1 to n, so each derivative has a corresponding new variable. Substituting the new variables into
the original ODE leads to:

1. One first order equation for each original equation.

2. One or more additional equations relating the new variables.

Example 5.8

Consider the IVP
y′′(t) = t · y(t)

with initial conditions, y(1) = 1, y′(1) = 2.

Solution: We introduce

y1(t) = y(0)(t) = y(t), y2(t) = y(1)(t) = y′(t)

and hence the system of 1st order ODE’s is:

y′
1(t)y2(t)

y′
2(t) = ty1(t)

with initial conditions y1(1) = 1 and y2(1) = 2. ⋆
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Example 5.9

Convert

x′′(t) + y′(t)x(t) + 2t = 0
y′′(t) + (y(t))2x(t) = 0

to first order.

Solution: Introduce variables:

x1(t) = x(t), x2(t) = x′(t), y1(t) = y(t), y2(t) = y′(t)

Hence we have

x′
2(t) + y2(t)x1(t) + 2t = 0
y′

2(t) + (y1(t))2x1(t) = 0
x2(t) = x′

1(t)
y2(t) = y′

1(t)

and hence we have 
x′

1(t)
x′

2(t)
y′

1(t)
y′

2(t)

 =


x2(t)

−y2(t)x1(t)− 2t

y2(t)
−(y1(t))2x1(t)


which is in the form of

Z⃗ ′ = f(t, Z⃗)

for Z⃗ defined as
[
x1(t) x2(t) y1(t) y2(t)

]T

. ⋆

5.9 Stability

Comment 5.9

Since errors are generally O(hp) for some p, our schemes are less accurate for large h.

Discovery 5.8

But, error/perturbations in initial conditions may lead to vastly different or incorrect answers (as we
saw with floating point).

y′(t) = f(t, y(t)), y(0) = y0 + ε0

Definition 5.14: Unstable

If some initial error ε0 grows exponentially for many steps (n → ∞), our time-stepping scheme is
unstable.
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5.9.1 Test Equation

We’ll consider a simple linear ODE, our “test equation”,

y′(t) = −λ · y(t), y(0) = y0

for constant λ > 0. The exact solution is y(t) = y0 exp(−λt), which tends to 0 as t→∞.

Definition 5.15: Stability

Stability tells us what our numerical algorithm itself does to small errors/ perturbations.

Stability does not imply accuracy, large time steps still usually induce large (truncation) error.

Algorithm 5.7

1. Apply a given time stepping scheme to our test equation.

2. Find the closed form of its numerical solution and error behavior.

3. Find the conditions on the timestep h that ensure stability (error approaching zero).

5.9.2 Stability of Forward Euler

Recall that Forward Euler is
yn+1 = yn + h · f(tn, yn)

Hence
yn+1 = yn + h · (−λ · yn) = (1− hλ)yn

This has closed form
yn = y0(1− hλ)n

We know that the true solution vanishes as t approaches infinity. Our Forward Euler solution vanishes to
zero only when

|1− hλ| < 1

which holds when
h <

2
λ

or − hλ < 0

Result 5.3

Hence Forward Euler method is stable when

0 < h <
2
λ

Question 5.8.

If we perturb the initial condition with error ε0, how does this method behave?
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Solution: We have
y(p)

n = (y0 + ε0)(1− hλ)n

and hence the error is
Error = εn = y(p)

n − yn = ε0(1− hλ)n

which suggests that the error has the same behaviour. ⋆

We say Forward Euler is conditionally stable as it is stable when h satisfies the stability condition
we desire.

5.9.3 Stability of Backward/Implicit Euler

Recall that Backward Euler is
yn+1 = yn + h · f(tn+1, yn+1)

Hence
yn+1 = yn + h · (−λ · yn+1) ⇒ yn+1 = 1

1 + hλ
yn

This has closed form
yn = y0

(
1

1 + hλ

)n

We know that the true solution vanishes as t approaches infinity. Our Forward Euler solution vanishes to
zero when

1 + hλ > 0

which holds when
h > 0

By the same logic, we find the error/ perturbation also follows the same form:

εn = ε0

(1 + hλ)n

Backwards Euler is unconditionally stable.

Lecture 11 - Monday, February 10

5.9.4 Stability of Improved Euler

Recall that Improved Euler is

yn+1 = yn + h

2
[
f(tn, yn) + f(tn+1, y∗

n+1)
]

where y∗
n+1 = yn + hf(tn, yn). Plugging into the equation, we have

y∗
n+1 = yn + h(−λyn) (1)

yn+1 = yn + h

2
[
−λyn +−λy∗

n+1
]

(2)
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Plugging (1) into (2) we have

yn+1 = yn + h

2 [−λyn +−λ(yn + h(−λyn))]

= yn

(
1− hλ + h2λ2

2

)
Hence the closed form is

yn+1 = y0

(
1− hλ + h2λ2

2

)n

and error will likewise follow
εn = ε0

(
1− hλ + h2λ2

2

)n

Therefore, it is stable when

−1 < 1− hλ + h2λ2

2 < 1

For the left hand side, the quadratic has no real roots.

Result 5.4

On the other side, the right hand side yields us

h <
2
λ

Discovery 5.9

This is the same stability condition as Forward Euler.

5.10 Stability in General (beyond the test equation)

For our linear test equation y′ = −λy, forward Euler gave a bound related to λ:

λ =
∣∣∣∣ ∂

∂y
(−λy)

∣∣∣∣ =
∣∣∣∣∂f

∂y

∣∣∣∣
For nonlinear problems, (linear) stability depends on ∂f

∂y (for dynamics function f) evaluated at a given point
in time/space.
For systems of ODEs, stability relates to the eigenvalues of the “Jacobian” matrix,

∂(f1, f2, f3, . . . , fn)
∂(y1, y2, y3, . . . , yn)

5.11 Truncation Error and Adaptive Time Stepping

Definition 5.16: Truncation Error

Truncation error tells us how the accuracy of our numerical solution scales with time step h.
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Question 5.9.

We want to know how to determine LTE in general, for methods we haven’t seen before. For instance,
given the expression for a time-stepping scheme:

yn+1 = ⟨ stuff ⟩

derive its dominant truncation error, O(hp) i.e., find p.

Algorithm 5.8

Given a time-stepping scheme, yn+1 = RHS

1. Replace approximations on RHS with exact versions.
e.g, yn → y(tn) and f(tn+1, yn+1)→ y′(tn+1), etc.

2. Taylor expand all RHS quantities about time tn (if necessary).

3. Taylor expand the exact solution y(tn+1) to compare against.

4. Compute difference y(tn+1) − yn+1. Lowest degree non-canceling power of h gives the local
truncation error.

5.11.1 Truncation Error Example — Forward Euler

Example 5.10

We already saw forward Euler:
yn+1 = yn + hf(tn, yn)

1. Replace yn with y(tn), and f with y′:

yn+1 = y(tn) + hf(tn, y(tn)) = y(tn) + hy′(tn)

2. Nothing to Taylor expand on RHS; everything is already at time tn.

3. Exact solution Taylor expands to:

y(tn+1) = y(tn) + hy′(tn) + h2

2 y′′(tn) + O(h3)

4. Difference is: LTE = y(tn+1)− yn+1 = h2

2 y′′(tn) + O(h3) = O(h2)

5.11.2 Truncation Error Example — Trapezoidal

Example 5.11
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We have Trapezoidal as:
yn+1 = yn + h

2 [f(tn, yn) + f(tn+1, yn+1)]

1. Replace yn with y(tn), and RHS quantities with exact counterparts:

yn+1 = y(tn) + h

2 [y′(tn) + y′(tn+1)]

2. Taylor expand RHS quantities about tn:

y′(tn+1) = y′(tn) + hy′′(tn) + h2

2 y′′′(tn) + O(h3)

Plugging in gives us

yn+1 = y(tn) + h

2

[
y′(tn) + y′(tn) + hy′′(tn) + h2

2 y′′′(tn) + O(h3)
]

= y(tn) + hy′(tn) + h2

2 y′′(tn) + h3

4 y′′′(tn) + O(h4)

3. Exact solution Taylor expands to:

y(tn+1) = y(tn) + hy′(tn) + h2

2 y′′(tn) + h3

6 y′′′(tn) + O(h4)

4. Difference is: LTE = y(tn+1)− yn+1 = O(h3).

5.11.3 Truncation Error Example — BDF2

Example 5.12

We have BDF2 as:
yn+1 = 4

3yn −
1
3yn−1 + 2h

3 f(tn+1, yn+1)

1. Replace yn with y(tn), and RHS quantities with exact counterparts:

yn+1 = 4
3y(tn)− 1

3y(tn−1) + 2h

3 y′(tn+1)

2. Taylor expand RHS quantities about tn:

y′(tn+1) = y′(tn) + hy′′(tn) + h2

2 y′′′(tn) + O(h3)

and
y(tn−1) = y(tn)− hy′(tn) + h2

2 y′′(tn)− h3

6 y′′′(tn) + O(h4)

Plugging in gives us
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yn+1 = 4
3y(tn)− 1

3

[
y(tn)− hy′(tn) + h2

2 y′′(tn)− h3

6 y′′′(tn) + O(h4)
]

+ 2h

3

[
y′(tn) + hy′′(tn) + h2

2 y′′′(tn) + O(h3)
]

Simplifying it we obtain

yn+1 = y(tn) + hy′(tn) + h2

2 y′′(tn) + 7h3

18 y′′′(tn) + O(h4)

3. Exact solution Taylor expands to:

y(tn+1) = y(tn) + hy′(tn) + h2

2 y′′(tn) + h3

6 y′′′(tn) + O(h4)

4. Difference is: LTE = y(tn+1)− yn+1 = O(h3).

5.11.4 Adaptive Time-Stepping

Comment 5.10

Adapt the time step during the computation to keep error small, while minimizing wasted effort.

Discovery 5.10

If we knew the error for a given h, we could choose a good h to always satisfy error < tolerance ... but
if we already knew the exact error, we’d also know the solution!

Lecture 12 - Wednesday, February 12

Therefore, we use two different time-stepping schemes together. Compare their results to estimate
the error, and adjust h accordingly.

Example 5.13

For instance, if

1. yn+1 = ⟨Method A⟩ with O(h4).

2. yn+1 = ⟨Method B⟩ with O(h5).

Then the approximate the error as
err = |yA

n+1 − yB
n+1|

Adaptive Time-Stepping using Order p and Order p + 1 methods Suppose for method A

yA
n+1 = y(tn+1) + O(hp)
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We can rewrite it as
yA

n+1 = y(tn+1) + (hp + O(hp+1))

If B is one order more accurate, say O(hp+1), then

yB
n+1 = y(tn+1) + O(hp+1)

Methods A’s true error is
|yA

n+1 − y(tn+1)| = (hp + O(hp+1))

Our estimated error is
|yA

n+1 − yB
n+1| = (hp + O(hp+1))

Discovery 5.11

Therefore, the dominant (lowest power) component of the error matches, so our estimate is a decent
approximation to use to adjust h.

How to estimate the next time step size We can estimate the error coefficient C as:

C ≈
|yA

n+1 − yB
n+1|

(hold)p

where hold is the most recent time step size. If C changes slowly in time, we can estimate the next step error
as:

errnext = |yA
n+2 − y(tn+1)| ≈ C(hnew)p

where hnew is the next step size to be determined. Plug in C to obtain

errnext ≈
|yA

n+1 − yB
n+1|

(hold)p
· (hnew)p

=
(

hnew

hold

)p

|yA
n+1 − yB

n+1|

Given a desired error tolerance “tol”. Set errnext = tol and solve for hnew:

hnew = hold

(
tol

|yA
n+1 − yB

n+1|

)1/p

To (roughly) compensate for our approximation, we may be conservative by scaling our tolerance
down by some factor α, say 1/2 or 3/4. This will allow step size to grow larger. Again, when it is likely safe
to do so.
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5.12 Exercises for ODEs

Exercise 5.1

True or false: With an unconditionally stable method, one can take arbitrarily large time steps in
numerically solving a stable ODE within a given accuracy.

Exercise 5.2

State the following problem in first order form. Differentiation is respect to t:

u′′(t) + 3v′(t) + 4u(t) + v(t) = t

v′′(t)− v′(t) + u(t) + v(t) = cos(t)

Exercise 5.3

Apply both the Forward Euler and Modified Euler methods to the IVPy′(t) −5y(t)
y(0) = 5

Show the computation schemes for both methods and estimate the step size for each case that ensures
stable computations.

Exercise 5.4

Suppose you are using an ODE solver to compute an approximate solution to the equation y′ = f(t, y).
At some point ti, you have an approximate solution yi. Using the solver, you compute estimates yh

i+1
and y

h/2
i+1 using steps h and h/2, where h = 0.01. Note that the second estimate involves applying the

ODE solver twice, first to get to ti+ 1
2
, and then again to get from ti+ 1

2
to ti+1. The method you are

using is a second order method with third order local truncation error. Suppose

yh
i+1 = 3.269472 . . . , y

h/2
i+1 = 3.269374 . . .

That is,
∥yh

i+1 − y
h/2
i+1∥ ≈ 10−4.

Derive an estimate for the local truncation error at the point ti+1. Show carefully how you arrived at
your estimate.
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6 Midterm — Cutoff (and solution)

Comment 6.1

This is the Midterm Cutoff.

Question 1

(a) The smallest (in magnitude) representable positive floating point number is

a = 0.100000× 10−6

(b) With similar reason,
b = 0.100001× 10−6

and hence the spacing between a and b is 10−11.

(c) we have
c = 0.999999× 106 and d = 0.999998× 106

and hence the spacing is 10.

(d) E is simply β1−t = 10−4.

(e) Real value is 5028.7626, int he FPS, we should have 0.50287× 104.

(f) The absolute error is given by

Eabs = |0.50287× 104 − 5028.7626| = 0.0606

and so the relative error is
Erel = Eabs

|5028.7626| = 1.124438× 10−5

Question 2

(a) We have

fl(fl(x) + fl(y)) = ((1 + δ1)x + (1 + δ2)y)(1 + δ3)
= (1 + δ1 + δ3 + δ1δ3)x + (1 + δ2 + δ3 + δ2δ3)y

and hence we can calculate the relative error.

Question 3

(a) We have

L2 = (x− (−1))(x− 3)(x− 5)
(1− (−1))(1− 3)(1− 5)

(b) We have

p(x) =
4∑

i=1
f(xi)Li(x) = f(−1)L1(x) + f(1)L2(x) + f(3)L3(x) + f(5)L4(x)
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(c) We notice that
degf = 2 and deg(p) ≤ 3

and f and p interpolate at the same four data points, and hence by the Unisolvence Theorem, we have
f = p, which implies that

p(x) = 2x2 + 3x− 9

Question 4

Denote the first polynomial as S0(x) and the second as S1(x), solving S0(2) = S1(2) we have

a = 4

Solving for S′
0(x) = S′

1(x) we have
A = −12

and hence S′
0(0) = 4 and S′

1(3) = 1.

Question 5

(a) We have y1 = 181

(b) We have

y1 = y0 + hf(t1, y1)

= 2 + 0.2 ·
(

900(1.2)
(y1 − 1)3 − 5

)
= 1 + 216

(y1 − 1)3

Solving for y1 we have y1 ≈ 4.83

Question 6

We would eventually have
yn+1

(
1 + hλ

2

)
= yn

(
1− hλ

2

)
Solving for

−1 <

(
1− hλ

2

)
/

(
1 + hλ

2

)
< 1

we have h > 2/λ.
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Question 7

We have

yn+1 = yn + hf

(
tn + h

2 , y(tn) + h

2 f (tn, y(tn))
)

= y(tn) + h

[
f(tn, y(tn)) + h

2
∂f(tn, y(tn))

∂t
+ h

2
f(tn, y(tn))

∂y
+ O(h2)

]
= y(tn) + hf(tn, y(tn)) + h2

2

(
f(tn, y(tn))

∂t
+ f(tn, y(tn))∂f(tn, y(tn))

∂y

)
+ O(h3)

= y(tn) + hf(tn, y(tn)) + h2

2
∂f(tn, y(tn))

dt
+ O(h3)

= y(tn) + hy′(tn) + h2

2 y′′(tn) + O(h3)

as desired.
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7 Fourier Analysis

Common examples of the applications of Fourier Analysis include:

• “signal processing” in general (filtering, denoising, etc.)

• sound/audio manipulation.

• image/video processing (e.g. JPEG-style compression).

• analyzing sensor data.

• electromagnetic signals.

Definition 7.1: Fourier Analysis

Fourier Analysis takes in data/ functions, and outputs combinations of functions with different
frequencies. This allows us to process and analyze the data which could be processed in Inverse Fourier
Transform, yields us the data/ function in the domain.

Example 7.1: Orange Juice Pricing

Consider the price of orange juice over many months.
Typically cyclical or periodic (i.e., pattern repeats over time) due to e.g. seasonal variation in

supply and demand. (We might approximate it with a sine curve.)

80 100 120 140 160

0
1
2
3
4 1 year

Time (months)

f
(t

)

Example 7.2

Other recurring phenomena can have effects on different time scales: weather fluctuations, variation in
import costs, El Nino, etc.

Data might actually look more like this:

0 50 100 150 200 250

1.5
2

2.5
3

3.5
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Question 7.1.

How can we also represent these additional fluctuations in data?

Solution: Add more sinusoidal terms with different periods/ frequencies.x ⋆

Result 7.1

General form could be:

f(t) = a0 + a1 cos(qt) + b1 sin(qt) + a2 cos(2qt) + b2 sin(2qt) + · · ·

7.1 Continuous Fourier Series

Definition 7.2: Periodic

A function f is said to be periodic if there exists T such that

f(t± T ) = f(t)

i.e. f repeats after one length/ period T .

Comment 7.1

The goal is to represent any f(t) as an infinite sum of trigonometric functions:

f(t) = a0 +
∞∑

k=1
ak cos

(
2πkt

T

)
+

∞∑
k=1

bk sin
(

2πkt

T

)

where ak and bk indicate the “information” or amplitude for each sinusoid of a specific period T

k
, or

frequency k

T
.

Discovery 7.1

Higher integer k indicates shorter period & higher wave frequency.

Example 7.3

https://upload.wikimedia.org/wikipedia/commons/5/50/Fourier_transform_time_and_frequency_
domains.gif.

7.1.1 Handy Identities
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Code 7.1

We have ∫ 2π

0
cos(kt) sin(jt)dt = 0

for any integers k and j. i.e. the integral of the product of cos(kt) and sin(jt) over [0, 2π] is 0.

Definition 7.3: Orthogonal

We say that these two functions are orthogonal to each other.

Code 7.2

Here are more: ∫ 2π

0
cos(kt) cos(jt) dt = 0 for k ̸= j,∫ 2π

0
sin(kt) sin(jt) dt = 0 for k ̸= j,∫ 2π

0
sin(kt) dt = 0,∫ 2π

0
cos(kt) dt = 0.

Comment 7.2

We can use these to extract a single Fourier coefficient at a time!

We want
f(t) = a0 +

∞∑
k=1

ak cos(kt) +
∞∑

k=1
bk sin(kt)

Integrate over [0, 2π] to use some of our orthogonality identites:∫ 2π

0
f(t) dt = a0

∫ 2π

0
dt +

∞∑
k=1

ak�������
∫ 2π

0
cos(kt) dt +

∞∑
k=1

bk�������
∫ 2π

0
sin(kt) dt

Therefore, we have

a0 =
∫ 2π

0 f(t) dt∫ 2π

0 dt
= 1

2π

∫ 2π

0
f(t) dt

which implies that a0 is the average value of f over [0, 2π]. Now we wish to determine coefficients
aℓ for ℓ > 0. Again we starts with

f(t) = a0 +
∞∑

k=1
ak cos(kt) +

∞∑
k=1

bk sin(kt)
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Multiply by cos(ℓt) and integrate over [0, 2π]:∫ 2π

0
f(t) cos(ℓt) dt =

��������∫ 2π

0
a0 cos(ℓt) dt +

∞∑
k=1

ak

∫ 2π

0
cos(kt) cos(ℓt) dt +

∞∑
k=1

bk
����������∫ 2π

0
sin(kt) cos(ℓt) dt

Therefore, the only term left is when k = ℓ in the middle summation term. Hence

aℓ =
∫ 2π

0 f(t) cos(ℓt) dt∫ 2π

0 cos2(ℓt) dt

= 1
π

∫ 2π

0
f(t) cos(ℓt) dt

Comment 7.3

Similarly, we can also find that

bℓ = 1
π

∫ 2π

0
f(t) sin(ℓt) dt

Lecture 13 - Monday, February 24

7.2 Fourier Transforms – The Discrete Setting

7.2.1 Euler’s Formula

Theorem 7.1

Euler’s Formula tells us that
eiθ = cos(θ) + i sin(θ)

Discovery 7.2

As a result, we have
e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ)

and thus
cos(θ) = eiθ + e−iθ

2 sin(θ) = eiθ − e−iθ

2

Result 7.2

Now, given our earlier sinusoidal expression of a function f(t)

f(t) = a0 +
∞∑

k=1
ak cos(kt) +

∞∑
k=1

bk sin(kt)

we can express it more concisely as

f(t) =
∞∑

k=−∞

ckeikt (3)
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where the ck coefficients are complex numbers.

7.2.2 Converting between ck, and ak and bk

The coefficients are given by:

c0 = a0, ck = ak

2 − i
bk

2 , and c−k = ak

2 + i
bk

2 for k > 0

And we have the relationships:

|a0| = |c0|, and |ck| = |c−k| =
1
2
√

a2 + b2

7.2.3 Finding cℓ coefficients

We can also obtain a formula for cℓ directly by noting that

∫ 2π

0
eikte−iℓt dt =

0 if k ̸= ℓ,

2π if k = ℓ.

If we multiply both sides of equation (3) by e−iℓt and integrate term by term we obtain the formula

cℓ = 1
2π

∫ 2π

0
e−iℓtf(t) dt

For typical functions f(t), there is a small amount of information in the high-frequency harmonics. Therefore,
we can approximate any input signal f(t) by

f(t) ≃
M∑

k=−M

ckeikt

7.3 Discrete Fourier Transform

Usually, we have an input signal sampled with N samples over a period T , with samples being ∆t = T/N

apart. Let us denoted the input signal by f(n∆t) = fn, and so the input sampled data is given by the set
f0, f1, . . . , fN−1. Note that f(0) = f(T ), so that given f(0), f(T ) is redundant. Let the discrete sample time
be

tn = n∆t = nT

N
, for n = 0, 1, . . . , N − 1

We can think of our problem as a problem in interpolation. We are given a finite set of points (t0, f0), . . . , (tN−1, fN−1)
and wish to find constants a0, ak, bk such that

a0 +
M∑

k=0
ak cos

(
2πkt

T

)
+

M∑
k=0

bk sin
(

2πkt

T

)
(for some M) interpolates these values.
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Comment 7.4

As was the case in the previous section, it is convenient to use exponential rather than trigonometric
forms for our expression. Since we have N sample points, we can fit this data exactly if we use N degrees
of freedom. Therefore we approximate the input signal f(t) by

f(t) ≃
N/2∑

k=−N/2+1

cke
i2πkt

T

where we will assume from now on that N is even.

For the above formula to be useful we need to have a formula for the ck in terms of the sampled
values f(tn) = f(n∆t) = fn. Then

f(n∆t) = fn =
N/2∑

k=−N/2+1

cke
i2πnk

N

For computational purposes (see section on FFT) we wish to write this formula in a more convenient fashion.
Recall that we have assumed that f(t + N) = f(t). Thus,

fn =
N/2∑

k=−N/2+1

cke
i2πnk

N (4)

=
N/2∑
k=0

cke
i2πnk

N +
−1∑

k=−N/2+1

cke
i2πnk

N (5)

Letting j = N + k in the second term in the above equation, we get

−1∑
k=−N/2+1

cke
i2πnk

N =
N−1∑

j=N/2+1

cj−N e
i2πn(j−N)

N (6)

=
N−1∑

j=N/2+1

cj−N e
i2πnj

N (7)

For convenience, let us define for j > N/2

cj = cj−N for j = N/2 + 1, . . . , N − 1

that is, we have extended the definition of cj periodically. By this we mean that cj±N = cj .

Code 7.3

Now equation (7) becomes
−1∑

k=−N/2+1

cke
i2πnk

N =
N−1∑

k=N/2+1

cke
i2πnk

N
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Result 7.3

Now equation (5) yields

fn =
N−1∑
k=0

cke
i2πnk

N

Or, letting Fk = ck, we can write this as

fn =
N−1∑
k=0

Fke
i2πnk

N

Definition 7.4: Roots of Unity

For notational convenience we defined:
W = e( 2πi

N )

W is an N th Root of Unity, since it satisfies

W N = e2πi = 1

7.3.1 fn =
N−1∑
k=0

FkW nk

Hence we have

fn =
N−1∑
k=0

Fke
i2πnk

N =
N−1∑
k=0

FkW nk (fn)

Comment 7.5

Discrete data fn is expressed as a sum of coefficients, Fk, times complex exponentials, W nk.

Algorithm 7.1

To be useful, operations we need are:

1. Convert input time-domain data fn to frequency-domain Fk.

2. Convert frequency-domain data Fk back to time-domain fn.

Question 7.2.

We have derived #2, but how can we solve for Fk given fn?

Solution: We use orthogonality ideas, as in the continuous case for ak, bk or ck ... ⋆
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7.3.2 Roots of Unity — Orthogonal Identity

Discovery 7.3

Properties of the N th roots of unity:

N−1∑
j=0

W jkW −jℓ =
N−1∑
j=0

W j(k−ℓ) = Nδk,ℓ

Assuming (for now) that k, ℓ ∈ [0, N − 1], where k, ℓ are both integers.

Proof. We have two cases to consider:

1. k = ℓ: we simple have
N−1∑
j=0

1 = N

2. k ̸= ℓ: applying geometric series, we have
N−1∑
j=0

(
W k−ℓ

)j =
(
W k−ℓ

)N − 1
W k−ℓ − 1 = 0

thus we have completed our proof.

To find Fk, we’ll need another useful property of our N th roots of unity. Recall that we have

Lecture 13 - Wednesday, February 26

fn =
N−1∑
k=0

FkW nk

To obtain the kth coefficient, we multiply the above equation by W −nk and sum from 0 to N − 1:
N−1∑
n=0

fnW −nk =
N−1∑
n=0

N−1∑
k=0

FkW nkW −nk =
N−1∑
k=0

Fk

N−1∑
n=0

W n(j−k) =
N−1∑
j=0

FjNδj,k = Fk ·N

7.3.3 Fk = 1
N

N−1∑
n=0

fnW −nk

Therefore, we obtain

Fk = 1
N

N−1∑
n=0

fnW −nk (Fk)

Definition 7.5: Discrete Fourier transform

The above two resultint formulae are our Discrete Fourier Transform pair.
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Result 7.4

The discrete Fourier transform is invertible.

Example 7.4

Given four discrete Fourier coefficients Fk, find the corresponding four data points fn. Let F =


−2

2 + i

−2
2− i

,

what is the vector f?

Solution: We have N = 4, so

W = e
2πi
N = e

2πi
4 = cos

(π

2

)
+ i sin

(π

2

)
= i

and from the formula

fn =
N−1∑
k=0

FkW nk

we have

f =


0
−2
−8
2


as desired. ⋆

Example 7.5

Consider a set of N data points defined such that fn = cos
(

2πn

N

)
. Show that F1 = FN−1 = 1/2; for

all other coefficients, Fk = 0. Therefore we can express fn in our Fourier representation as

fn = cos
(

2πn

N

)
=

N−1∑
k=0

FkW nk = 1
2W n(1) + 1

2W n(N−1)

Solution: Using Euler Formula, we have

cos θ = eiθ + e−iθ

2
Hence we have

Fk = 1
N

N−1∑
n=0

1
2

(
ei2πn/N + e−i2πn/N

)
W −nk

= 1
N

N−1∑
n=0

1
2
(
W n + W −n

)
W −nk

= 1
2N

N−1∑
n=0

(
W n(1−k) + W −n(1+k)

)
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Multiply the second term by W Nn = 1 to adjust the exponent, we have

Fk = 1
2N

N−1∑
n=0

(
W n(1−k) + W n(N−1−k)

)
Using orthogonal identity,

Fk = δ1,k

2 + δN−1,k

2 =

 1
2 for k = 1, N − 1
0 otherwise

as desired. ⋆

7.3.4 Two Properties of the DFT

Result 7.5

As a consequence of N th roots of unity,

1. The sequence {Fk} is doubly infinite and periodic.
i.e., if we allow k < 0 or k > N − 1, the Fk coefficients repeat;

2. Conjugate symmetry: If data fn is real, Fk = FN−k.

Comment 7.6

Hence the |Fk| are symmetric about k = N/2.

Example 7.6

For N = 8:
F0, F1, F2, F3 , F4 , F5, F6, F7

with conjugate symmetry,
F1 = F7, F2 = F6, F3 = F5

Proof. Proof for property one:
Given Fk for integer k ∈ [0, N −1], then for arbitrary integer ℓ ∈ (−∞, +∞), Fℓ is one of the existing values.
We can express arbitrary ℓ as

ℓ = mN + p

for p ∈ [0, N − 1]. Then

W −k = e−i 2π
N (mN+p) = e−i2πm︸ ︷︷ ︸

=1

·e
−i2πp

N = W −p

and hence

Fk = 1
N

N−1∑
n=0

fnW −nk

= 1
N

N−1∑
n=0

fnW −np = Fp

for p ∈ [0, N − 1].
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Proof. Proof for property two:
We will be using three facts:

• W N−k = W −k;

• W j = W −j ;

• For real number x, we have x = x.

Hence we have

FN−k = 1
N

N−1∑
n=0

fnW −n(N−k)

= 1
N

N−1∑
n=0

fnW −n(N−k)

= 1
N

N−1∑
n=0

fnW −n(−k)

= 1
N

N−1∑
n=0

fnW −nk = Fk

as desired.

Comment 7.7

Typically, we want to learn/achieve something by processing the data (Image data, audio samples,
prices, intensities, etc.).

In theory, the time-domain data tells us everything!
In practice, Fourier coecients provide easier access to useful insights/information for certain

problems.

Definition 7.6: Direct Current

We call F0 direct current (DC).

Discovery 7.4

Coecient F0 is always the average of data values.

7.4 Inverse Discrete Fourier Transform

The result (fn) can be established by looking at a matrix algebra view of equation (Fk) and using the
orthogonality property. Let f be the column vector of the data samples, and let F be the corresponding
column vector of Fourier coefficients. Then (Fk) can be written as

F = Mf

69



where M is an N ×N matrix with jth column = 1/N ·W (j). Now, the orthogonality property states that

M
T

M = 1
N

I

where I is the N ×N identity matrix. In other words,

M−1 = NM
T

and hence
f = NM

T
F

If we write this out componentwise, we find that it is (fn).

7.4.1 Lack of Standardization

Discovery 7.5

Various definitions of DFT/IDFT pairs can be found in the literature/code.

We use the following, with 0-based indexing:

fn =
N−1∑
k=0

FkW nk and Fk = 1
N

N−1∑
n=0

fnW −nk

Code 7.4

SciPy (and some other sources) use:

fn = 1
N

N−1∑
k=0

FkW nk and Fk =
N−1∑
n=0

fnW −nk

Comment 7.8

So be careful (a) when coding in Jupyter, and (b) reading other sources!

Lecture 15 - Wednesday, March 05

Comment 7.9

Lecture 14 is skipped due to midterm. This lecture is shorter because we present midterm solution in
class.

7.5 Fast Fourier Transform

We want to explore a more efficient method.
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Question 7.3.

1. What is the complexity of the naive method?

2. What property of the DFT allows it to be sped up?

3. How can we construct an algorithm from this property?

4. What is the complexity of the new method?

7.5.1 Slow Fourier Transform

A direct implementation of Fk = 1
N

N−1∑
n=0

fnW −nk takes O(N2) complex floating-point operations.

Code 7.5

Essentially two nested for loops:

For k = 0 : N - 1 // iterate over all k unknown coeffs
F_k = 0 // initialize coefficient to zero
For n = 0 : N - 1 // iterate over all n data values

F_k += f_n Wˆ(-nk) // increment by scaled data value
End
F_k = F_k / N // normalize

End

7.5.2 Faster Fourier Transform

Theorem 7.2

We use divide and conquer.

Algorithm 7.2

1. Split the full DFT into two DFT’s of half the length.

2. Repeat recursively.

3. Finish at the base case of individual numbers.

Comment 7.10

(If N ̸= 2m for some m, we can pad our initial data with zeros.)

Question 7.4.

Key question: How can we split up the DFT?
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Theorem 7.3

The usual DFT of the sequence fn is:

Fk = 1
N

N−1∑
n=0

fnW −nk

We’ll show we can express it with DFTs of two new arrays of half the length (N/2):

gn = 1
2

(
fn + fn+ N

2

)
hn = 1

2

(
fn − fn+ N

2

)
W −n

where n ∈
[
0, N

2 − 1
]
. Then

Feven = G = DFT (g) and Fodd = H = DFT (h)

Solution: We have

Fk = 1
N

N−1∑
n=0

fnW −nk = 1
N

N/2−1∑
n=0

fnW −nk + 1
N

N−1∑
n=N/2

fnW −nk

Assume N is even, we reindex second um using m = n−N/2,

Fk = 1
N

N/2−1∑
n=0

fnW −nk + 1
N

N/2−1∑
m=0

fm+N/2W −(m+N/2)k

Replace m back to n we have

Fk = 1
N

N/2−1∑
n=0

fnW −nk + 1
N

N/2−1∑
n=0

fn+N/2W −nkW −kN/2

Combine sums, we have

Fk = 1
N

N/2−1∑
n=0

(
fn + fn+N/2 ·W −kN/2

)
W −nk

Discovery 7.6

Notice that
W −kN/2 =

(
e2πi/N

)−kN/2
= e−πik = (−1)k

Hence we have two cases to consider:

1. k is even: in this case we have

Fk = F2j = 1
N

N/2−1∑
n=0

(
fn + fn+N/2

)
W −2nj

for j = 0 to N/2− 1.
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2. k is odd: in this case we have

Fk = F2j+1 = 1
N

N/2−1∑
n=0

(
fn − fn+N/2

)
W −n(2j+1)

= 1
N

N/2−1∑
n=0

[
(fn − fn+N/2)W −n

]
W −2nj

for j = 0 to N/2− 1.

Definition 7.7: Half-Length Vector

Now, it is fair for us to define the two new half-length vectors by

gn = 1
2
(
fn + fn+N/2

)
hn = 1

2
(
fn − fn+N/2

)
W −n

for n = 0 to N/2− 1, and let M = N/2, then we observe:

F2k = 2
N

N/2−1∑
n=0

gnW −2nk

F2k+1 = 2
N

N/2−1∑
n=0

hnW −2nk,

for k = 0, . . . , N/2− 1. Also,

Discovery 7.7

Observe that
W −2kn = e− 2πi

N 2kn =
(

e− 2πi
N/2

)kn

so that W 2 is the W factor for an input signal of length N/2 (that is, it is the (N/2)-th complex root of
unity). Thus, athe above equations can be regarded as

Feven = G = DFT (g) and Fodd = H = DFT (h), where

g = 1
2

(
fn + fn+ N

2

)
and h = 1

2

(
fn − fn+ N

2

)
W −n

⋆

Result 7.6

Therefore, we have converted the problem of computing a single DFT of N points into the computation
of two DFT’s of N/2 points. We can then reduce each of the N/2 length DFT’s into two N/4 length
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DFT’s, and so on. There will be log2 N of these stages. Each stage requires O(N) complex floating
point operations, so the complexity of the FFT is O(N log2 N).

Lecture 16 - Monday, March 10

Example 7.7

As an example, we have

f =



2
2
1
3
2
2
1
3


⇒ g =


2
2
1
3

 and h =


0
0
0
0



DFT of g is G =
[
2 1+i

4 − 1
2

1−i
4

]
and DFT of h is H =

[
0 0 0 0

]
. Hence, recovering DFT of

f by interleaving G and H we obtain:

F =
[
2 0 1 + i

4 0 −1
2 0 1− i

4 0
]

7.5.3 FFT Algorithm — Butterfly

Code 7.6

1 N = 2m, W = ei2π/N

2 for k = 1, . . . , m do
3 for j = 1, . . . , 2k−1 do
4 l := (j − 1) ∗N

5 for n = 0, . . . , N/2− 1 do
6 wfactor := (W −n)2k−1

7 temp := wfactor · (fn+l − fn+l+N/2)
8 fn+l := 1

2 · (fn+l + fn+l+N/2)
9 fn+l+N/2 := 1

2 · temp

10 end

11 end
12 N := N/2
13 end

Each step of the FFT computes values using fn and fn+N/2 which can be visualized as following:
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fn

fn+N/2

fn + fn+N/2

fn+N/2 − fn+N/2

Comment 7.11

This diagram resembles the wings of a butterfly, hence the name of the algorithm.

Question 7.5.

Given the input f0, . . . , fN−1, we want to compute the DFT F0, . . . , FN−1. The above butterfly algo-
rithm overwrites the original array f0, . . . , fN−1 with f ′

0, . . . , f ′
N−1. Where do we find F0, . . . , FN−1?

Solution: In general, we can determine what value of F0, . . . , FN−1 is in X0, . . . , XN−1, by simply expressing
the output array X index as an log2 N digit binary number, reversing the bit sequence, and then converting
back to decimal. ⋆

7.5.4 A Complete Butterfly example

Example 7.8

Consider the input data,
f = (1, 2, 3, 4, 1, 2, 3, 4) (N = 8)

We can obtain the half length sequences:

g = (4, 3, 2, 1) and h = (0, 0, 0, 0)

Now, we recurse on these two sequences until we reach the base case (a single element), each time
overwriting the original array, f .

Example 7.9: A smaller, complex FFT example

Find the sequence of vectors and the final result of applying the butterfly FFT approach to the data:
f = (2 + i, 3,−2,−2i).
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Solution: The solution is F =
(

3− i

4 ,
3− i

2 ,
−3 + 3i

4 ,
1
2 + i

)
. ⋆

7.6 Image/ Data Compression

Lecture 17 - Wednesday, March 12

7.6.1 Compression of 1D Images

Algorithm 7.3: Compression Strategy:

1. Create an (approximate) compressed version of the image, fn, by throwing away “small” Fourier
coecients: |Fk| < tol;

2. To reconstruct the image, run the inverse DFT to get modified data (pixels), f̂n;

3. Discard the imaginary parts of f̂n, to ensure new data is strictly real.

7.6.2 Image Processing in 2D

Question 7.6.

How does the DFT work for 2D (grayscale) image data? i.e., we have a 2D array X of per-pixel
intensities, of size M ×N . Assume we have scaled image data, so 0 ≤ X(i, j) ≤ 1.

Solution: We apply a 2D extension of the DFT definition to the data, like so:

Fk,ℓ = 1
NM

N−1∑
n=0

M−1∑
j=0

fn,jW −nk
N W −jℓ

M

Essentially two standard (1D) DFT’s combined. Note that two (possibly distinct) roots of unity are used,
one per dimension:

WN = e
2πi
N and WM = e

2πi
M

Result is a 2D array of Fourier coefficients, Fk,ℓ. ⋆

Discovery 7.8

The 2D Fast FT can be computed eciently using nested 1D FFTs:

1. First, transform each row (separately) using 1D FFTs.

2. Then, transform each column of the result, again using 1D FFTs.

Theorem 7.4

The following is the derivation of 2D FFT via 1D FFT.
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Proof. We have

Fk,ℓ = 1
NM

N−1∑
n=0

M−1∑
j=0

fn,jW −nk
N W −jℓ

M

= 1
N

N−1∑
n=0

W −nk
N

 1
M

M−1∑
j=0

fn,jW −jℓ
M


︸ ︷︷ ︸

1D FFT per row

Hence it is convenient to define

Hn,ℓ = 1
M

M−1∑
j=0

fn,jW −jℓ
M

and consequently

Fk,ℓ = 1
N

N−1∑
n=0

Hn,ℓW
−nk
N

which is another Fourier transform.

Result 7.7: Complexity

Performing M 1D FFT’s of length N : M ·O(N log2 N) = O(MN log2 N).
Performing N 1D FFT’s of length M : N ·O(M log2 M) = O(MN log2 M).
So total complexity is

O(MN(log2 M + log2 N))

7.7 Aliasing

Definition 7.8: Aliasing

If a real input signal contains high frequencies, but the spacing of our discretely sampled data points
is inadequate, “aliasing” can occur.

Example 7.10

Let’s explore this mathematically to better understand what’s happening in terms of Fourier analysis.

Solution: Recall our Fourier series of a continuous signal was

f(t) =
+∞∑

k=−∞

ck exp
(

i2πkt

T

)
for a period T ,. If we sample this true signal at points tn = n∆t = nT/N , then

fn = f(tn) =
+∞∑

k=−∞

ck exp
(

i2πkn

N

)
=

+∞∑
k=−∞

ckW nk
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This is exact for arbitrarily high frequencies. A plot of |ck|2 would give the exact power spectrum. Now, the
coefficients of the DFT, Fk are defined by

fn =
N/2∑

k=−N/2+1

Fk exp
(

i2πkn

N

)
(8)

Note that the index k runs from [−N/2 + 1, . . . , +N/2] so that it corresponds with equation above. A plot
of |Fk|2 would show the computed approximate power spectrum.

Question 7.7.

How closely does Fk correspond to ck, for k ∈ [−N/2 + 1, +N/2]?

We can determine the precise relationship between Fk and ck as follows. Recall the orthogonality
relation:

N−1∑
p=0

exp
(

i2πp(ℓ− k)
N

)
= Nδk,ℓ

which can be written (by shifting the index) as

N/2∑
p=−N/2+1

exp
(

i2πp(ℓ− k)
N

)
= Nδk,ℓ (9)

It therefore follows from equations (8) and (9) that

Fl = 1
N

N/2∑
n=−N/2+1

fne−i 2πnl
N

Substituting gives

Fl = 1
N

N/2∑
n=−N/2+1

e−i 2πnl
N

∞∑
k=−∞

ckei 2πkn
N

=
∞∑

k=−∞

ck
1
N

N/2∑
n=−N/2+1

ei
2πn(k−l)

N

Since k = −∞, ..,∞ in the above equation, we rewrite equatino (8):

N/2∑
p=−N/2+1

ei
2πp(l−k)

N = N(δk,l + δk,l+N + δk,l−N + δk,l+2N + . . . )

Consequently, we have

Fl = cl + cl+N + cl−N + cl+2N + cl−2N + . . .

⋆
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Result 7.8

The above equation has the following interpretation: if the original signal contains frequencies with
complex frequency |p|

T > N
2T ( N

2T is the Nyquist frequency), then the power in this frequency is aliased
down to a lower frequency. In other words a plot of |Fk|2 will be misleading, since some of the power
at a given k may actually be coming from a higher frequency. This effect can result in poor images
captured by digital cameras. The cure for this problem is to sample at a higher rate, or to filter the
signal before digitization.

7.8 Exercises

Exercise 7.1

Let {fn}, n = 0, 1, . . . , N − 1, be N samples of a real signal, and N be even.

(a) Show that

W −nk + W −(N−n)k = 2 cos
(

2πnk

N

)
.

(b) Suppose the signal {fn} is an even function; i.e. fn = fN−n, for n = 1, 2, . . . , N/2− 1. Show that
Fk is real.

Exercise 7.2

Suppose the signal {fn} is a square signal, defined as:

fn =

0, if n = 0, 1, . . . , N
4 − 1 or n = 3N

4 , 3N
4 + 1, . . . , N − 1,

1, if n = N
4 , N

4 + 1, . . . , 3N
4 − 1.

Show that F2k = 0, k = 1, 2, . . . , N
2 − 1.

Solution: We have

F2k = 1
N

N−1∑
n=0

fnW −n2k

= 1
N

3N/4−1∑
n=N/4

W −n2k

Change vairable, let i = n−N/4, and so n = i + N/4, we have

F2k = 1
N

N/2−1∑
i=0

W −(i+N/4)2k

= 1
N
·W −2Nk/2

N/2−1∑
i=0

W −i2k

= (−1)k

N
· 1−W −2(N/2)k

1−W −2k
= 0

as desired. ⋆
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Exercise 7.3

For a given input sequence fi, why is the first component of its DFT, F0, always equal to the average
of the components of fi?

Exercise 7.4

For a constant c, determine the DFT of a signal f0 + c, . . . , fN−1 + c in terms of the DFT of the signal
f0, . . . , fN−1.

Solution: We know that
Fk = 1

N

N−1∑
n=0

(fn + c)W −nk

= 1
N

N−1∑
n=0

fnW −nk + 1
N

N−1∑
n=0

cW −nk

Recall orthogonal identity of N th roots of unity, we obtain that

Fk = 1
N

N−1∑
n=0

fnW −nk + cδk,0

as desired. ⋆

Exercise 7.5

Calculate the Discrete Fourier Transform of the following periodic time sequences by hand, both using
the direct DFT formula.

(i) f [n] = (1, 2, 2, 1) (n = 0, . . . , 3; N = 4)

(ii) f [n] = (1, 2, 3, 2) (n = 0, . . . , 3; N = 4)

Why is the resulting transform real in this case?

Exercise 7.6

(Parseval’s Theorem) Let fn, n = 0, . . . , N − 1 be given data values (real or complex) and let Fk,
k = 0, . . . , N − 1 be the DFT of fn. Show that

N−1∑
k=0

FkFk = 1
N

N−1∑
n=0

fnfn.

Solution: Recall that we have

fn =
N−1∑
k=0

FkW nk
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Hence we have that

fn =
N−1∑
k=0

FkW −nk

Therefore we know that
N−1∑
n=0

fnfn =
N−1∑
n=0

(
N−1∑
k=0

FkW nk

)(
N−1∑
ℓ=0

FℓW
−nℓ

)

=
N−1∑
k=0

N−1∑
ℓ=0

FkFℓ

N−1∑
n=0

W n(k−ℓ)

where we know that there are exactly n pairs of (k, ℓ) whose values satisfy k = ℓ, hence we have

N−1∑
n=0

fnfn = N

N−1∑
k=0

FkFk

which is what we wanted. ⋆

Exercise 7.7

Derive an algorithm for determining the FFT of two real signals of the same length by performing a
single FFT of a complex signal.

81



8 Google Page Link

Question 8.1.

When one uses Google to search web pages for key words a set of pages is returned, each ranked in
order of its importance. The question we try to answer in this section is how this ranking is obtained.

8.1 Introduction

We represent the web’s structure as a directed graph

Example 8.1

1

2

4

3

6

7
5

4

3

Definition 8.1:

Nodes (circles) represent pages. Arcs (arrows) represent links from one page to another.

Definition 8.2: Degree

We will use degree to refer to a node’s outdegree, the number of arcs leaving that node.

Comment 8.1

For instance,
deg(4) = 2 and deg(3) = 1

Definition 8.3: Adjacency Matrix

To store our directed graph, we can use a kind of adjacency matrix, G.

Gij =

1, if link i→ j exists
0, otherwise

Then the (out)degree for node q is the sum of entries in column q.

Comment 8.2

Matrix G is not necessarily symmetric about the diagonal!
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Example 8.2

For the above digraph, we have

G =

1 2 3 4 5 6 7



0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 2

0 1 0 1 0 0 0 3

0 1 1 0 0 0 0 4

0 0 0 0 0 0 1 5

0 0 0 0 1 0 0 6

0 0 0 0 0 1 0 7

The basic page rank idea is as follows. A link from web page j to web page i can be viewed as a
vote on the importance of page i by page j. We will assume that all outlinks are equally important (this
could be changed easily), so that the importance conferred on page i by page j is simply 1/deg(j) (assuming
that there is a link from j → i). But this simply gives some idea of the local importance of i, given that we
are visiting page j. To get some idea of the global importance of page i, we have to have some idea of the
importance of page j. This requires that we examine the pages which point to page j, and then we need to
determine the importance of these pages, and so on.

8.1.1 The Random Surfer Model

Let us consider the hypothetical concept of a random surfer. This surfer selects each page in the Web in
turn. From this initial page, the surfer then selects at random an outlink from this initial page, and visits
this page. Another outlink is selected at random from this page, and so on. The surfer keeps track of the
number of times each page is visited. After K visits, the surfer then begins the process again, by selecting
another initial page.

Comment 8.3

This algorithm is presented below, where we assume that there are R pages in the web.

Code 8.1

Rank(m) = 0 , m = 1, ..., R
For m = 1, ..., R

j = m
For k = 1, ..., K

Rank(j) = Rank(j) + 1
Randomly select outlink l of page j
j = l

EndFor
EndFor
Rank(m) = Rank(m) / (K * R) , m = 1, ..., R
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Notice that at the end, we estimate the overall importance as:

Rank(page i) = (V isits to page i)/(Total visits to all pages)

Discovery 8.1

Potential issues with this algorithm?

• The number of real web pages is monstrously huge, many iterations (large K, R) needed.

• Number of steps taken per random surf sequence must be large, to get a representative sample.

• What about dead end links? (Stuck on one page!)

• What about cycles in the graph? (Stuck on a closed subset of pages!)

Clearly, better strategies are needed.

8.2 Page Rank Modified

Definition 8.4: Markov Chain Matrix

Let P be a (large!) matrix of probabilities, where Pij is the probability of randomly transitioning from
page j to page i:

Pij =

 1
deg(j) if link i→ j exists
0 otherwise

Comment 8.4

To create the Markov Chain matrix P from the adjacency matrix G, divide all entries of each
column of G by the column sum (out-degree of the node).

8.2.1 Dead Ends

Comment 8.5

To deal with dead-end links, we will simply “teleport” to a new page at random!

Theorem 8.1

Mathematically, we define a column vector d such that:

di =

1, if deg(i) = 0
0, otherwise
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and vector e = [1, 1, 1, . . . , 1, 1]T be a column vector of ones. Then if R is the number of pages, we
augment P to get P ′ defined by:

P ′ = P + 1
R

edT

Proof. Consider the example

Example 8.3

1

2

4

3

6

7
5

4

3

Notice that Page numbered 1 is an dead end, and hence we have

d =
[
1 0 0 0 0 0 0

]T

and R = 7

which gives that

1
R

edT =



1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0
1/7 0 0 0 0 0 0


as desired. (This is an proof by example!)

8.2.2 Cycles

Question 8.2.

How can we apply a similar trick to escape closed cycles of pages?

Solution: Most of the time (a fraction α), we follow links randomly, via P ′. Occasionally, with some
(usually small) probability, (1− α), we teleport from any page to any other page:

M = αP ′ + (1− α) 1
R

eeT

⋆

Discovery 8.2

Google purpotedly used α ≈ 0.85.
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Definition 8.5: Google Matrix

The above result matrix M is called the Google matrix.

Example 8.4

1

2

3

4
5

6

The resulting Google matrix M is:

M =



1/6 1/12 5/24 1/6 1/12 5/24
1/6 1/12 5/24 1/6 1/12 1/12
1/6 1/12 1/12 1/6 1/12 5/24
1/6 1/3 5/24 1/6 1/3 5/24
1/6 1/3 1/12 1/6 1/12 5/24
1/6 1/12 5/24 1/6 1/3 1/12



8.3 Evolving The Probability Vector

Definition 8.6: Probability Vector

A probability vector is a vector q such that

0 ≤ q1 ≤ 1 ∀ i

and ∑
i

qi = 1

Now we have:

• the probability vector describing the initial state, p0.

• a Markov matrix M describing the transition probabilities among pages.

Their product Mp0 tells us the probabilities of our surfer being at each page after one transition.

p1 = Mp0

Likewise, for any step n, next step probabilities are pn+1 = Mpn.
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Theorem 8.2

If pn is a probability vector, then pn+1 = Mpn is also a probability vector.

Proof. We know that pn+1
i ≥ 0 because it is the sum and products of probabilities. We can also show∑

i pn+1
i = 1, as follows:

∑
i

pn+1
i =

∑
i

∑
j

Mijpn
j =

∑
j

(
pn

j

∑
i

Mij

)
=
∑

j

pn
j = 1

To be a probability vector, we also need pn+1
i ≤ 1, why is this true?

Finally, Page Rank asks:

With what probability does our surfer end up at each page after many steps, starting from
p0 = 1

R e?

i.e., What is
p∞ = lim

k→∞
(M)kp0

Higher probability in p∞ vector implies greater importance. Then we can rank the pages by this importance
measure.

8.4 Page Rank Summary

Result 8.1

1. Given a graph of a network, compute a corresponding Google transition (Markov) matrix...

M = α

(
P + 1

R
edT

)
+ (1− α) 1

R
eeT

2. Repeatedly evolve a probability vector pi via pn+1 = Mpn towards a steady state, approximating
a “random surfer”.

3. The site with the highest probability of being visited is considered most important/influential.

Code 8.2

p0 = e/R

For k = 1, ..., until converged
pk = Mpk−1

I f maxi|[pk]i − [pk−1]i| < tol then qu i t
EndFor

Lecture - Wednesday, March 19
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8.5 Make Page Rank efficient

Definition 8.7: Dense

A matrix is dense if most or all entries are non-zero. Store in an N ×N array, manipulate “normally”.

Definition 8.8: Sparse

A matrix is sparse if most entries are zero.

Discovery 8.3

We wish to use a “sparse” data structure to save space (and time). Prefer algorithms that avoid
“destroying” sparsity (i.e., filling in zero entries).

We have
M = α

(
P + 1

R
edT

)
︸ ︷︷ ︸

sparse

+ (1− α)
R

eeT︸ ︷︷ ︸
dense

Consider computing
Mpn = αPpn︸ ︷︷ ︸

(1)

+ α

R
edT pn︸ ︷︷ ︸
(2)

+ 1− α

R
eeT pn︸ ︷︷ ︸

(3)

Output pn+1 is a vector, and a sum of three vectors: first one is a sparse matrix-vector product, which can
be done efficiently. The third one involves

eeT pn = e (eT pn)︸ ︷︷ ︸
scalar

where the scalar eT pn is simply one because pn is a probability vector. Therefore the third expression can
be simplified as

(1− α)
R

eT

Similarly, for second expression, we compute
α

R
(dT pn)e

Therefore
pn+1 = Mpn = (1) + (2) + (3)

has no dense matrix multiplication.

Comment 8.6

We never form M explicitly.

8.6 Convergence Analysis
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Example 8.5

Returning to a small web where M is

M =



1
40

1
6

37
120

1
40

1
40

1
40

9
20

1
6

37
120

1
40

1
40

1
40

9
20

1
6

1
40

1
40

1
40

1
40

1
40

1
6

1
40

1
40

9
20

7
8

1
40

1
6

37
120

9
20

1
40

1
40

1
40

1
6

1
40

9
20

9
20

1
40


with a ranking vector computed via the power method yielding

[0.05205, 0.07428, 0.05782, 0.34797, 0.19975, 0.26810]T

after 10 iterations. One can find that the lone eigenvector for eigenvalue 1 for M is then seen to be

v =
[

3080
59569 ,

4389
59569 ,

3420
59569 ,

1184000
3395433 ,

9560
47823 ,

16000
59569

]T

which with floating point numbers becomes

v ≈ [0.05170, 0.07367, 0.05741, 0.34870, 0.19990, 0.26859]T .

8.6.1 Some Technical Results

Theorem 8.3

Every Markov matrix Q has 1 as an eigenvalue.

Proof. The eigenvalues of Q and QT are the same (since Q and QT have the same characteristic polynomials).
Since QT e = e, we have that λ = 1 is an eigenvalue of QT . Thus λ = 1 is an eigenvalue of Q.

Theorem 8.4

Every (possibly complex) eigenvalue λ of a Markov matrix Q satisfies

|λ| ≤ 1

Thus 1 is the largest eigenvalue of Q.

Proof. This result actually follows from the Gershgorin Circle Theorem (a result that can be found in linear
algebra texts) applied to the eigenvalues of QT . Since the eigenvalues of Q and QT are the same, the theorem
follows.
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Definition 8.9: Positive Markov Matrix

A Markov matrix Q is a positive Markov matrix if

Qij > 0, ∀ i, j

Theorem 8.5

If Q is a positive Markov matrix, then there is only one linearly independent eigenvector of Q with
|λ| = 1.

Proof. See, for example, (Grimmett and Stirzaker, Probability and Random Processes, Oxford University
Press, 1989.)

8.6.2 Convergence Proof

Theorem 8.6

If M is a positive Markov matrix, the iteration

p∞ = lim
k→∞

(Mk)p0

converges to a unique vector p∞, for any initial probability vector p0.

Proof. Let xl be an eigenvector of M , corresponding to the eigenvalue λl. Suppose that M has a complete
set of eigenvectors, in other words, we can represent p0 as

p0 =
∑

l

clxl

for some scalars cl. (We do not have to make this assumption, but it simplifies the proof). Suppose also
that we order these eigenvectors so that |λ1| > |λ2| ≥ . . . so that x1 corresponds to the unique eigenvector
with λ1 = 1. Then

(M)kp0 = c1x1 +
R∑

l=2
cl(λl)kxl .

From Theorem (7.5.5), we have that |λl| < 1 for all l > 1, so that

lim
k→∞

(M)kp0 = c1x1

for any p0. c1x1 cannot be identically zero, since p0 is a probability vector, and hence p∞ is a probability
vector. Hence c1 ̸= 0 and x1 cannot be the zero vector. Uniqueness follows since if we start the iteration
with another probability vector

q0 =
∑

l

blxl

for some coefficients bl, then
q∞ = lim

k→∞
(M)kq0 = b1x1 .

But, for given x1, since q∞, p∞ are probability vectors, we have b1 = c1.
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9 Numerical Linear Algebra

Question 9.1.

Consider an n× n matrix A, a solution vector x and a right hand side vector b. We wish to solve

Ax = b

Comment 9.1

The classical way to solve a linear system of equations is via Gaussian elimination.

Result 9.1

However, the standard computer techniques referred to as Gaussian elimination for solving Ax = b are
based on factoring A into triangular factors. This view of Gaussian elimination has the following major
steps:

1. Compute triangular factors L and U from A such that A = LU

2. Solve Lz = b

3. Solve Ux = z

Discovery 9.1

Of course this may not be possible without re-ordering the equations. In matrix terms, re-ordering
the equations is accomplished by multiplying A and b by a ‘permutation’ matrix, P , that is solving
an equivalent system PAx = Pb.

9.1 Solving via Matrix Factorization

Comment 9.2

In fact it is not difficult to see that a triangular factorization of A is related to the row reduction process.
Here the factorization algorithm for factoring A = LU .

Example 9.1

We will see in the next section and the example below that the LU factorization process is almost identi-
cal to Gaussian elimination, the main difference being that we wish to retain the various multiplicative
factors: Let

A =

10 −7 0
−3 2 6
5 −1 5

 .
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First stage of LU factorization of A:10 −7 0
−3 2 6
5 −1 5

 R2−( −3
10 )R1

−−−−−−−−→

 10 −7 0
−0.3 −0.1 6

5 −1 5

 R3−( 5
10 )R1

−−−−−−−→

 10 −7 0
−0.3 −0.1 6
0.5 2.5 5


Proceeding with the second (and final) stage of factorization, we obtain 10 −7 0

−0.3 −0.1 6
0.5 −25 155


from which we extract the factors

L =

 1 0 0
−0.3 1 0
0.5 −25 1

 and U =

10 −7 0
0 −0.1 6
0 0 155

 .

One can easily verify that LU = A in this example.

Comment 9.3

The diagonal entries of L is always filled with 1’s, and the entries below the diagonal are preserved
from the original resulting matrix. These entries represent the multiplicative factors.

Definition 9.1: LU Factorization Notation

In order to save space, we store the LU factorization back in A: Consider the above example again, we
have

A = LU =

 10 −7 0
−0.3 −0.1 6
0.5 −25 155


whose boxed entries belong to L and the rest belong to U .

Code 9.1: LU factorization

1 For k = 1, ..., n // iterate over all rows
2 For i = k + 1, ..., n // iterate each row i below row k
3 mult := aik/akk // determine row i’s multiplicative factor
4 aik := mult // store this factor
5 For j = k + 1, ..., n // iterate over all columns in the row
6 aij := aij - mult * akj // subtract the scaled data
7

8 // Note that the resulting factors are stored back into A for the sake of
space
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Question 9.2.

Why is solving LUx = b better than solving Ax = b?

Solution: L and U are both triangular: all entries above, or below, the diagonal are zero, respectively.
This makes them easier (i.e., more efficient) to solve. ⋆

9.1.1 Forward Solve & Backward Solve

Definition 9.2: Forward Solve

Solving Lz = b for z is called forward solve.

Definition 9.3: Backward Solve

Solving Ux = z for x is called backward solve.

Code 9.2: Forward Solve

1 For i = 1, ..., n
2 zi := bi
3 For j = 1, ..., i - 1
4 zi := zi - lij * zj

Code 9.3: Backward Solve

1 For i = n, ..., 1
2 xi := zi
3 For j = i + 1, ..., n
4 xi := xi - uij * x

Discovery 9.2

Recall that in the psuedocode for LU factorization, we have

mult := aik/akk

where akk = 0 should be avoided, and when its value is nearly zero, numerical instability could happen
because a large factor can cause large floating point error during subtraction and magnify existing
floating point error.

Theorem 9.1

To fix the problem we discovered, we do:
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Find the row with the largest magnitude entry in the current column beneath the
current row, and swap those rows if larger than the current entry.

9.1.2 Permutation Matrix

Comment 9.4

We wish to find a modified factorization of A such that PA = LU where P is a permutation matrix.

Definition 9.4: Permutation Matrix

A permutation matrix P is a matrix whose eect is to swap rows of the matrix it is applied to (i.e.,
multiplied with).

Example 9.2

Solve for  1 4 5
−2 3 3
3 0 6

x =

 4
1
−3


Solution: We first want to find the PA = LU factorization. We first want to perform row swappings
on A. Notice that we wish to swap row 1 and 3 first, and then 2 and 3, hence we have

P =

0 0 1
1 0 0
0 1 0


With more computations, we obtain0 0 1

1 0 0
0 1 0


 1 4 5
−2 3 3
3 0 6

 =

 1 0 0
1/3 1 0
−2/3 3/4 0


3 0 6

0 4 3
0 0 19/4


⋆

We want to know the (asymptotic) cost to solve a system of size n × n. We will measure cost in
total FLOPs: FLoating point OPerations.

Definition 9.5: FLOPS

FLOPS, or FLoating point OPerations, is approximated as the number of

adds + subtracts + multiplies + divides

9.1.3 Costs of Gaussian Elimination

Recall
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1 For k = 1, ..., n
2 For i = k + 1, ..., n
3 mult := aik/akk
4 aik := mult
5 For j = k + 1, ..., n
6 aij := aij - mult * akj

Result 9.2

Solution: In the inner for loop, there is one division, for the inner inner for loop, there is one sub-
traction and one multiplication. Hence summing over all the loops we get:

n∑
k=1

n∑
i=k+1

1 +
n∑

j=k+1
2

 = 2n3

3 + O(n2)

⋆

9.1.4 Cost of Triangular solve

Recall backward solve

1 For i = n, ..., 1
2 xi := zi
3 For j = i + 1, ..., n
4 xi := xi - uij * x

Result 9.3

The total number of FLOPs is given by

n∑
i=1

1 +
n∑

j>i+1
2

 = n2 + O(n)

9.2 Gaussian Elimination ≡ Matrix Factorization

Comment 9.5

We viewed row-swapping as a matrix; we can do the same for row-subtraction!

Discovery 9.3

Zeroing a (sub-diagonal) entry of a column by row subtraction can be written as applying a specific
matrix M such that

MAold = Anew

where
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• Aold is the original matrix.

• Anew is the matrix after subtracting the specific row.

Example 9.3

The operation (
2nd row

)
:=
(
2nd row

)
− a2,1

a1,1

(
1st row

)
can be written as a matrix:

M =


1 0 0 0

−a2,1

a1,1
1 0 0

0 0 1 0
0 0 0 1


M is the identity matrix, but with a zero entry replaced by the (negative of the) necessary multiplicative
factor.

The matrix left at the end is U .

Example 9.4

For example, in 3× 3 case, we have shown:

M (3)M (2)M (1)A = U

Therefore
A =

(
M (3)M (2)M (1)

)−1
U =

(
M (1)

)−1 (
M (2)

)−1 (
M (3)

)−1

︸ ︷︷ ︸
L

U

Define
L =

(
M (1)

)−1 (
M (2)

)−1 (
M (3)

)−1

and we have our factorization!

Question 9.3.

But what is
(
M (k))−1?

Discovery 9.4

The inverse of this simple matrix form is the same matrix, but with the off-diagonal entry negated.

9.2.1 Remark: Solving Ax = b by Matrix Inversion

One can show that the finding inverse is actually more expensive (in FLOPs) than using our “factor and
triangular solve” strategy. It also generally incurs more F.P. error.
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Result 9.4

Most numerical algorithms avoid ever computing A−1.

9.3 Condition numbers and Norms

Definition 9.6: Norms

Norms are measurements of ”size”/ magnitude for vectors or matrices.

Definition 9.7: Conditioning

Conditioning describes how the output of a function/operation/matrix changes due to changes in
input.

The norm of a vector is a measure of its size. Let x be a vector with components

x =


x1

x2
...

xn


and we define

Definition 9.8: 1-norm

∥x∥1 =
n∑

i=1
|xi|

Definition 9.9: 2-norm

∥x∥2 =
(

n∑
i=1

x2
i

)1/2

Definition 9.10: ∞-norm

∥x∥∞ = maxi|xi|

Definition 9.11: p-norm

Usually, these norms are referred to as the p-norm, i.e.,

∥x∥p ; p = 1, 2,∞
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Code 9.4

Python computes these vector norms using the np.linalg.norm command.

9.3.1 Properties of Norms

We have

∥x∥ = 0 → xi = 0, ∀ i

∥αx∥ = α∥x∥, α = scalar
∥x + y∥ ≤ ∥x∥+ ∥y∥

9.3.2 Matrix Norm

Definition 9.12: Matrix Norm

Matrix norms are often defined/”induced” as follows, using p-norms of vectors:

∥A∥ = max∥x∦=0
∥Ax∥
∥x∥

Discovery 9.5

There are simpler equivalent definitions in some cases:

∥A∥1 = maxj

n∑
i=1
|Aij |︸ ︷︷ ︸

(max absolute column sum)

∥A∥∞ = maxi

n∑
j=1
|Aij |︸ ︷︷ ︸

(max absolute row sum)

Discovery 9.6

The matrix’s 2-norm relates to the eigenvalues. Specifically, if λi are the eigenvalues of AT A, then

∥A∥2 = maxi

√
|λi|

9.3.3 Matrix Norm Properties

1. ∥A∥ = 0 ⇐⇒ Aij = 0 ∀i, j.

2. ∥αA∥ = |α| · ∥A∥ for scalar α.

3. ∥A + B∥ ≤ ∥A∥+ ∥B∥

4. ∥Ax∥ ≤ ∥A∥ · ∥x∥.

5. ∥AB∥ ≤ ∥A∥ · ∥B∥

6. ∥I∥ = 1.
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Definition 9.13: Frobenius Norm

Another fun matrix norm that is not “induced” by a standard vector norm is the Frobenius norm.

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

A2
ij

Lecture 22 - Monday, March 31

9.4 Conditioning

9.4.1 Perturbing b

Example 9.5: Conditioning Example – Perturbing b

Consider the system: [
1 2
2 3.999

]
x =

[
4

7.999

]
And the similar system (perturbed b): [

1 2
2 3.999

]
x =

[
4.001
7.998

]

How do the solutions differ?

Theorem 9.2

Analysis of conditioning when perturbing b.

Solution: Given an equation Ax = b, perturbing b by ∆b. This gives

A(x + ∆x) = b + ∆b

Subtracting off Ax = b yields us

A∆x = ∆b or ∆x = A−1b

We wish to find the relative change in x, ∥∆x∥
∥x∥

, given a relative change in b, ∥∆b∥
∥b∥

. Apply norm rules to
Ax = b:

∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥ or ∥A∥
∥b∥
≥ 1
∥x∥

Recall that we also have
∥∆x∥ ≤ ∥A−1∥∥∆b∥

Combining the above two inequalities (by multiplication) we obtain

∥∆x∥
∥x∥

≤ (∥A−1∥∥∆b∥) ·
(
∥A∥
∥b∥

)
= (∥A−1∥∥A∥)︸ ︷︷ ︸

κ

·
(
∥∆b∥
∥b∥

)
where the condition number κ bounds the relative change in x due to relative change in b. ⋆
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9.4.2 Perturbing A

Theorem 9.3

Analysis of conditioning when perturbing A.

Solution: Consider perturbing A:
(A + ∆A)(x + ∆x) = b

Subtracting off Ax = b and rearrance, we obtain

A(∆x) = −(∆A)(x + ∆x) or ∆x = −A−1(∆A)(x + ∆x)

Take norms on both sides:
∥∆x∥ ≤ ∥A−1∥∥∆A∥∥x + ∆x∥

Multiply by ∥A∥
∥A∥

= 1 and take x terms to LHS:

∥∆x∥
∥x + ∆x∥

≤ (∥A∥∥A−1∥)︸ ︷︷ ︸
κ

· ∥∆A∥
∥A∥

Condition number κ dictates a bound on relative change in x. ⋆

Result 9.5

Condition number of a matrix A is denoted κ(A) = ∥A∥ · ∥A−1∥.

1. κ ≈ 1→ A is well-conditioned.

2. κ≫ 1→ A is ill-conditioned.

Another useful property of vector/matrix norms is equivalence.

Discovery 9.7

The norms we’ve looked at differ from one another by no more than a constant factor.

C1∥x∥a ≤ ∥x∥b ≤ C2∥x∥a

for constants C1, C2, and norms ∥ · ∥a and ∥ · ∥b.

9.4.3 Residual vs. Error

Definition 9.14: Residual

As a proxy (stand-in) for error, we often use the residual r:

r = b−A(xapprox)

i.e., by how much does our computed solution fail to satisfy the original problem.
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Question 9.4.

How does the residual r relate to error?

Solution: Assuming xapprox = x + ∆x, we have

r = b−A(x + ∆x)

or
A(x + ∆x) = b− r

(r looks just like a perturbation of b!) So, applying our earlier bound using ∆b = r, we have

∥∆x∥
∥x∥

≤ κ(A)∥r∥
∥b∥

Result 9.6

The solution’s relative error, ∥∆x∥
∥x∥

, is bounded by the condition number times the relative size of
residual r w.r.t. to rhs b.

If κ ≈ 1, a small residual indicates a small relative error. But, if κ is large, residual could still
be small while error is quite large if problem is poorly conditioned.

⋆

For implementation in floating point arithmetic, Gaussian elimination with pivoting is as stable and
accurate as any other method. This is one of the reasons that it is so commonly used. It is known that
Gaussian elimination with pivoting produces a computed solution x̂ which satisfies

(A + E)x̂ = b,

where ∥E∥ = ϵmachine∥A∥, i.e. Gaussian elimination with pivoting solves a nearby problem exactly. From
the result from perturning A, we have

∥x− x̂∥
∥x̂∥

≤ κ(A)ϵmachine

Note that conditioning is a property of the problem, not a property of the equation solving algorithm.

Example 9.6

Find the condition numbers κ1(A) and κ∞(A) for the matrix

A =

3 0 0
0 2 1
0 1 2


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using the fact that

A−1 =

1/3 0 0
0 2/3 −1/3
0 −1/3 2/3


Solution: We have

∥A∥1 = maxj

∑
i

|Aij | = max{(3 + 0 + 0), (0 + 2 + 1), (0 + 1 + 2)} = 3

and
∥A−1∥1 = maxj

∑
i

|Aij | = max{(1/3 + 0 + 0), (0 + 2/3 + 1/3), (0 + 1/3 + 2/3)} = 1

and hence κ1(A) = 3× 1 = 3. Similarly, we can find that κ∞(A) = 3 as well. ⋆

Example 9.7

Using the above matrix A, what is κ2(A), if we know the eigenvalues λi of AT A are 1, 9, 9?

Solution: We know that
∥A∥2 = maxi

√
|λi| =

√
|9| = 3

For ∥A−1∥2, we need the eigenvalues of A−T A−1 = (AAT )−1. Since A happens to be symmetric, we know
that AAT = AT A, so they have the same eigenvalues. Now we know that the eigenvalues of A−T A−1 are
1, 1/9, 1/9, so

∥A−1∥2 = maxi

√
|λ′

i| =
√
|1| = 1

and hence κ2(A) = 3× 1 = 3. ⋆

Question 9.5.

Why is it true that κ(αA) = κ(A)?

Solution: We have
κ(αA) = ∥αA∥∥(αA)−1∥ = ∥A∥∥A−1∥ = κ(A)

⋆

Question 9.6.

Why is it true that κ(A) ≥ 1?

Solution: We have
κ(A) = ∥A∥∥A−1∥ ≥ ∥AA−1∥ = 1

⋆

9.5 Exercises for Numerical Linear Algebra
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Exercise 9.1

True or false: If x is any n-vector, then ∥x∥1 ≥ ∥x∥∞.

Exercise 9.2

True or false: If ∥A∥ = 0, then A = 0.

Exercise 9.3

Derive the algorithm to compute the UL decomposition of a matrix A, namely,

A = UL

where U and L are the upper and lower triangular matrices, respectively. We assume that no zero
pivots will occur in this case, so no pivoting strategy is needed.

Exercise 9.4

Assume that you are given an LU factorization of an n× n matrix A. Show how to use this to solve

A2x⃗ = b⃗

with computational complexity O(n2).

Exercise 9.5

Assume that you are given the decomposition A = LU where A is an n× n matrix. Describe how you
can use this decomposition to solve the system

AT x⃗ = b⃗

with computational complexity O(n2).

Exercise 9.6

Classify each of the following matrices as well-conditioned or ill-conditioned, and provide a brief expla-
nation for your answer in each case.[

1010

10−10

] [
1010

1010

] [
10−10

10−10

]
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